A Rsegoond

TR-106
Data Model Template for TR-069-Enabled Devices

Issue: 1 Amendment 4
Issue Date: February 2010

© The Broadband Forum. All rights reserved.

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband
network system development and deployment. This Broadband Forum Technical Report has
been approved by members of the Forum. This Broadband Forum Technical Report is not
binding on the Broadband Forum, any of its members, or any developer or service provider. This
Broadband Forum Technical Report is subject to change, but only with approval of members of
the Forum. This Technical Report is copyrighted by the Broadband Forum, and all rights are
reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members.

This Broadband Forum Technical Report is provided AS IS, WITH ALL FAULTS. ANY
PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL
REPORT, OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT
PERMITTED BY LAW ANY REPRESENTATION OR WARRANTY, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY:

(A) OF ACCURACY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;

(B) THAT THE CONTENTS OF THIS BROADBAND FORUM TECHNICAL REPORT
ARE SUITABLE FOR ANY PURPOSE, EVEN IF THAT PURPOSE IS KNOWN TO
THE COPYRIGHT HOLDER,;

(C) THAT THE IMPLEMENTATION OF THE CONTENTS OF THE TECHNICAL
REPORT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

By using this Broadband Forum Technical Report, users acknowledge that implementation may
require licenses to patents. The Broadband Forum encourages but does not require its members
to identify such patents. For a list of declarations made by Broadband Forum member
companies, please see http://www.broadband-forum.org. No assurance is given that licenses to
patents necessary to implement this Technical Report will be available for license at all or on
reasonable and non-discriminatory terms.

ANY PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL
REPORT, OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT
PERMITTED BY LAW (A) ANY LIABILITY (INCLUDING DIRECT, INDIRECT, SPECIAL,
OR CONSEQUENTIAL DAMAGES UNDER ANY LEGAL THEORY) ARISING FROM OR
RELATED TO THE USE OF OR RELIANCE UPON THIS TECHNICAL REPORT; AND (B)
ANY OBLIGATION TO UPDATE OR CORRECT THIS TECHNICAL REPORT.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only, and may not be modified without the advance
written permission of the Broadband Forum.

The text of this notice must be included in all copies of this Broadband Forum Technical Report.

February 2010 © The Broadband Forum. All rights reserved. 2 of 87

http://www.broadband-forum.org/

Data Model Template for TR-069-Enabled Devices

Issue History

TR-106 Issue 1 Amendment 4

Issue Number

Issue Date

Issue Editor

Changes

Issue 1

September 2005

Jeff Bernstein, 2Wire
Christele Bouchat, Alcatel
Tim Spets, Westell

Original

Issue 1 Amendment 1

November 2006

Jeff Bernstein, 2Wire
John Blackford, 2Wire
Mike Digdon, SupportSoft
Heather Kirksey, Motive
William Lupton, 2Wire
Anton Okmianski, Cisco

Clarification of original document

Issue 1 Amendment 2

November 2008

William Lupton, 2Wire
Hakan Westin, Tilgin

Addition of data model definition XML
Schema and normative XML common
object and component definitions

Issue 1 Amendment 3

September 2009

William Lupton, 2Wire
Hakan Westin, Tilgin

Addition of device type XML Schema

Issue 1 Amendment 4

February 2010

William Lupton, 2Wire

Paul Sigurdson, Broadband Forum

Moved data model definitions to TR-181
Issue 1

Comments or questions about this Broadband Forum Technical Report should be directed to info@broadband-

forum.org.

Editors

BroadbandHome™ Working Group

Chairs

February 2010

© The Broadband Forum. All rights reserved.

William Lupton
Paul Sigurdson

Greg Bathrick
Heather Kirksey

2Wire
Broadband Forum

PMC-Sierra

Alcatel-Lucent

30f 87

mailto:info@broadband-forum.org
mailto:info@broadband-forum.org

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Table of Contents
1 Introduction
11 Terminology
1.2 Document Conventions
B N (o] 11 (=T (0 (PP TPPPPI 10
2.1 (D= 1= W o [T =T o | PRSPPI 10
211 Data Hierarchy REQUIFEMENTSoiiiiiiiiiiiiee ettt e e ettt e e e e e ettt e e e e e e s ennaeeeeaaeeeannneeeeeas 11
2.1.2 Data Hierarchy EXAmMPIES........cc.uviiiiiiiei et e e e et e e e e e e et aeee s 12
2.1.3 The Supported Data Model and the Instantiated Data Modelccocovvveiiiiiiiiiiiienee s 14
2.2 (O] (=T Y Z=T =T (o101 o o SRRSO PUPPPRNt 14
221 Requirements for Compatible VEIrSIiONS............cooiiiiiiiiiii e 15
A V< = o] o T \\ o) 1 1o o PR RURPRRN
2.3 L 0] 1] S SRS PUUPPRRT
2.3.1 Scope of Profiles
23.2 MuUltiple Profile SUPPOITcoo et 16
bR R T o o) {1 <A =Y (o] g PSPPSR 16
2.3.4 BaSEliNe ProfileSoooiiiiiiiiie ettt et e e e naaeee s 16
2.3.5 Types of Requirements in @ Profilc.eiiiiiiiiiiii e 17
24 DEPRECATED and OBSOLETED EIMSccuuiitiiiiieeitit ettt ettt ettt ettt nnn e nee s 17
241 Requirements for DEPRECATED ITEMSviiiiiiiie ittt 17
242 Requirements for OBSOLETED ItEMScccoouviiiiiiiie ittt 18
I @ o 1=Tox =3 111 o] L= PR UPRPR
3.1 General Notation
3.2 Data TYPEeS....ccoeevrviririeeeeeiiins
3.3 Vendor-Specific Parameters
3.4 Common Object Definitions (REMOVE)coiiiiiiiiiieeiiee ettt 21
3.5 Inform RequireMentS (REMOVE)coouuiiiiiiiie ettt ettt e st e e e e
3.6 Notification Requirements (Removed)
3.7 DeviceSUMMArY DEFINITIONcooiiiii ettt e et e e e st e e s sate e e e snbeeeesseeeesaneeas
3.7.1 DeviceSUMMArY EXAMPIEScccuuiiiiiiiiee ittt ettt e et e e s et e e s enneeeesnaeee s

4 Profile Definitions (Removed)

NOIMALIVE RETEIEICESooiitiiiiii ettt ettt ettt et e e e et et eeeeeeee e ettt e eeeeee e s bt aeeesesssaaaaaeeeeessssaaaeeessessasnnaaaaeaes 24
Annex A. CWMP Data Model Definition XIML SCREM@ccoovvuiiiiiieiieeee ettt e e e e e e e e e eeaae e eees 25
Al Introduction
A2 Lo g g =V AT) 0] g 0 F= [o R 25
A2 1 IMPOrtiNG DM INSEANCES ...ccouviiieiiiiie ettt e e s b e s b e e s sanne e e s nneee s 26
N B 1o 1] o) o] S PP T PP PP PP P PPPPTPRN 28
F N B B T - R Y 01T TP TP PR P T PPOPPPPRPP 35
A2, 4 BIDIOGIaPNY ..o e e e e e e ae e e aan 45
AL2.5 COMPONENLS . 47
A.2.6 ROOt and ServiCe ODJECES.uueiiiiiiiiiiiii et e e e e e e e e e e e eaeeeaan 48
A2.7 e U= L L= (=] £ T UPPPORUPPRNE 49
F N - T ©] o] [T o £ PP P PP PO PPPPRPP 50
A.2.9 Profiles
F N2 K I Y/ (o To [[0%= 1 {0 N 51
A.3 (]| IS Yod g T<T 0 = VSR 52
Annex B. CWMP DeVice TYPE XML SCREM@....c.coiuiiiiiiiiii ittt ettt e e b e e s st e e 74
B.1 Introduction
B.2 Lo] g g =V AT) 0] g 1= [o R 74
B.2.1 IMPOrting DM INSTANCEScooiviiieiiee e ettt e e e e ettt e e e e e sttt e e e e e e st a e e e e e e s snsbbaaeeaeeesanssbseeeaeaenan 74
B.2.2 Features......cccciieiiiiiiiiiie e,
B.3 DT Features Schema
B.4 (D STl =] 4 T O EPSORR

February 2010 © The Broadband Forum. All rights reserved. 4 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

List of Figures

Figure 1 — Positioning in the ENd-t0-ENd AFChItECIUIEccvviiiiicecce e 7
Figure 2 — SPECITICAtION SITUCLUIEc.eeiiiie et sttt et et e s reete e s e et e e s tesbesteeneereeneennenneneas 8

List of Tables

QLI Lo T I = T 1Y/ -SSR 19
Table 2 — XML DeSCriPtION IMAIKUDc.couiiiiiitiitiiitiit ettt bttt bbbt 29
Table 3 — XML DeSCription TEMPIALEScviiriiiiiitieete ettt 30
Table 4 — XML NamMEA DA TYPES......cueiuireeiiitiiteieteit ettt ettt eb bbb bt e bbb sttt bbbt b bbbt n st b 36
Table 5 — XML Data TYPE FACELSoueuiiuiiieieiiieeieie ittt bbbttt b bbbttt b s 37
Table 6 — Path Name SCOPe DEFINITIONcviiiiiiiiiiici bbbt 38
Table 7 — PathRef FACet DEFINITIONocuiiiiiciece ettt eesrenes 40
Table 8 — InstanceRef FaCt DEFINITIONcviiiiiiiiie e ettt e 41
Table 9 — EnumerationRef FACEt DEFiNITIONcc.oiiiiiiiiiieee e e 41
Table 10 — XML Facet INNErtanCe RUIES........c..ouiiiiiiiiieieee e 43
Table 11 — XML BibliographiC RETEIENCES......ccviiviecieice et e e e s e sreenreens 45
Table 12 — XML Component DefiNItIONc.cccviiiiiieiiee s e e e e s reesreeaesneesneesreennaens 47
Table 13 — XML ROOt @Nd SEIVICE ODJECESciviiiiiiiiieiiiteetre ettt 48
Table 14 — XML Parameter DefiNITIONcviriiiiiiice ettt sne e ee e e 49
Table 15 — XML PAramELEr SYNTAXc.viuiiuiiiiirieietiit ettt sttt sttt b et e et e bbb bbb s 49
Table 16 — XML ODjJECt DEFINIIONeuiitiiiiiiiie bbbttt 50
Table 17 — XIML Table DefinitiONccviiiieeee ettt sttt ene e e e naenes 50
Table 18 — XML Profile DEFINITIONc.civiieiece sttt sttt sne e e e es 51
Table 19 — XML Parameter MOGITICAIIONcc.oouiiiiiiiiiiiiiee et ettt eas 51
Table 20 — XML OBject MOGITICALIONc.cciiiiicicce e e e e e steesreeaeaneesnsenraenreens 52
Table 21 — XML Profile MOGIFICALION.cuiiiiiiiiiieceeee bbbt e 52

February 2010 © The Broadband Forum. All rights reserved. 5 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Executive Summary

TR-106 specifies data model guidelines to be followed by all TR-069-enabled [2] devices. These guidelines include
structural requirements for the data hierarchy, requirements for versioning of data models, and requirements for
defining profiles.

In addition, TR-106 defines an XML Schema that as far as possible embodies these guidelines, and which is used for
defining all TR-069 data models. This makes data model definitions rigorous, and helps to reduce the danger that
different implementations will interpret data model definitions in different ways.

TR-106 also defines an XML Schema that allows a device to describe its supported TR-069 data models. This
description is both specific and detailed, allowing an ACS to know exactly what is supported by the device,
including any vendor-specific objects and parameters. Use of this Schema enhances interoperability and
significantly eases the integration of new devices with an ACS.

February 2010 © The Broadband Forum. All rights reserved. 6 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Introduction

TR-069 [2] defines the generic requirements of the CPE WAN Management Protocol (CWMP) methods which can
be applied to any TR-069-enabled CPE. It is intended to support a variety of different functionalities to manage a
collection of CPE, including the following primary capabilities:

e Auto-configuration and dynamic service provisioning
e Software/firmware image management

e Status and performance monitoring

e Diagnostics

The ability to manage the home network remotely has a number of benefits including reducing the costs associated
with activation and support of broadband services, improving time-to-market for new products and services, and
improving the user experience.

The following figure places TR-069 in the end-to-end management architecture:

OSS/BSS

Managed LAN
Device

Scope of CPE WAN Management
Protocol (CWMP):
ACS Southbound Interface

Managed LAN
Device

Auto-Configuration Gateway Device

Server (ACS)

ACS Northbound Interface

Figure 1 — Positioning in the End-to-End Architecture

The ACS is a server that resides in the network and manages devices in the subscriber premises. It uses the
methods, or RPCs, defined in TR-069 to get and set the state of the device, initiate diagnostic tests, download and
upload files, and manage events. Some portions of this state are common across managed devices and some are
relevant only to certain device types or services.

Specification Structure

Figure 2 shows the overall specification structure for the TR-069 [2] family of standards (as currently defined).
Please note that this will gradually become out of date as new documents are published.

February 2010 © The Broadband Forum. All rights reserved. 7 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Device:1 Device:2" /Service Objects\
. TR-104)
Performance test Component Objects VoiceService:1
: L : TR-135
[General purpose Component Objects STBService:1 |
- - TR-140)
TR-181i1 TR-181i2 TR-098 ‘ StorageService:1 |
Device:1 Device:2 IGD:1 < TR-196)
Data Model Data Model Data Model ‘ FAPService:1
TR-106
[Baseline Data Model template (this document)]
[[] [[[
TR-069
[CWMP

N VAN AN J

* The Device:2 Data Model applies to all types of device, including Internet Gateway
Devices (it includes everything that is in the IGD:1 data model)

Figure 2 — Specification Structure

TR-069 [2] defines the generic requirements of the CWMP methods which can be applied to any TR-069-enabled
device. TR-106 (this document) specifies a baseline object structure to be supported by any TR-069-enabled device.
It specifies how to structure and define data models, which are collections of objects and parameters on which the
generic methods act to configure, diagnose, and monitor the state of specific devices and services. The actual data
models are defined in their own specifications.

For a particular type of device, it is expected that the baseline defined in a document such as TR-181 [13] would be
augmented with additional objects and parameters specific to the device type. The data model used in any TR-069-
enabled device MUST follow the guidelines described in this document. These guidelines include the following
aspects:

e Structural requirements for the data hierarchy
e Requirements for versioning of data models
e Requirements for defining profiles

In addition, this document defines two XML Schemas:

e An XML Schema that as far as possible embodies these guidelines, and which is used for defining all TR-
069 data models. This makes data model definitions rigorous, and helps to reduce the danger that different
implementations will interpret data model definitions in different ways.

e An XML Schema that allows a device to describe its supported TR-069 data models. This description is
both specific and detailed, allowing an ACS to know exactly what is supported by the device, including any
vendor-specific objects and parameters. Use of this Schema enhances interoperability and significantly
eases the integration of new devices with an ACS.

February 2010 © The Broadband Forum. All rights reserved. 8 of 87

11

Data Model Template for TR-069-Enabled Devices

Terminology

TR-106 Issue 1 Amendment 4

The following terminology is used throughout the series of documents defining the CPE WAN Management

Protocol.

ACS

BBF

Base Supported
Data Model
CPE

Current
Supported
Data Model

Common
Object

Component

CWMP

Data Model

Device

DM Instance
DM Schema
DT Instance
DT Schema

Event

Instantiated
Data Model

Internet
Gateway
Device

February 2010

Auto-Configuration Server. This is a component in the broadband network responsible for auto-
configuration of the CPE for advanced services.

Broadband Forum.

The Data Model that is supported by all CPE of a given make, model and firmware version.
This refers to the Objects and/or Parameters that have code support in the current firmware.

Customer Premises Equipment; refers to any TR-069-enabled [2] device and therefore covers
both Internet Gateway devices and LAN-side end devices.

The Data Model that is currently supported by an individual CPE, i.e. the Base Supported Data
Model plus any additional Objects and/or Parameters supported by extra modules that have been
installed on the CPE. This refers to the Objects and/or Parameters that have code support in the
CPE.

An Obiject defined in TR-181 [13] that can be contained either directly within the “Device” Root
Object or (if the Common Object is a Secondary Common Object) within a Service Object
contained within the “Services” object.

A named collection of Objects and/or Parameters and/or Profiles that can be included anywhere
within a Data Model.

CPE WAN Management Protocol. Defined in TR-069 [2], CWMP is a communication protocol
between an ACS and CPE that defines a mechanism for secure auto-configuration of a CPE and
other CPE management functions in a common framework.

A hierarchical set of Objects and/or Parameters that define the managed objects accessible via
TR-069 [2] for a particular CPE.

Used here as a synonym for CPE.

Data Model Schema instance document. This is an XML document that conforms to the DM
Schema and to any additional rules specified in or referenced by the DM Schema.

Data Model Schema. This is the XML Schema [11] that is used for defining data models for use
with CWMP.

Device Type Schema instance document. This is an XML document that conforms to the DT
Schema and to any additional rules specified in or referenced by the DT Schema.

Device Type Schema. This is the XML Schema [11] that is used for describing a Device’s
Supported Data Model.

An indication that something of interest has happened that requires the CPE to notify the ACS.

The Data Model that currently exists on an individual CPE. This refers to the Object instances
and/or Parameters that currently exist within the data model. It can be thought of as the Current
Supported Data Model with all the “{i}” placeholders expanded to be the actual instance
numbers.

For example, “Device.Services.ABCService.{i}” in the Current Supported Data Model might
correspond to “Device.Services. ABCService.1” and “Device.Services.ABCService.2” in the
Instantiated Data Model.

A CPE device, typically a broadband router, that acts as a gateway between the WAN and the
LAN.

© The Broadband Forum. All rights reserved. 9 of 87

1.2

2.1

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

MediaWiki A software application that is used by Wikipedia and other projects.
http://en.wikipedia.org/wiki/MediaWiki.

Object A named collection of Parameters and/or other Objects.

Parameter A name-value pair representing a manageable CPE parameter made accessible to an ACS for
reading and/or writing.

RPC Remote Procedure Call.

Profile A named collection of requirements relating to a given Root Object, Service Object or
Component.

Root Object The top-level object of a CPE’s Data Model that contains all of the manageable objects. The

name of the Root Object is either “Device” or “InternetGatewayDevice” — the latter is used only
for the TR-098 [3] InternetGatewayDevice:1 Data Model.

Secondary A Common Object other than “ManagementServer” or “GatewayInfo”. Such objects can be
Common contained either directly within the “Device” Root Object or within a Service Object contained
Object within the “Services” object.

Service Object The top-most object associated with a specific service within which all Objects and Parameters
associated with the service are contained.

Supported Refers to either Base Supported Data Model or Current Supported Data Model, depending on
Data Model the context.

URI Uniform Resource Identifier [7].

URL Uniform Resource Locator [7].

Document Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [1].

Architecture

Data Hierarchy

The data model for a TR-069-enabled [2] device will follow a common set of structural requirements. The detailed
structure depends on the nature of the device.

A device will always have a single Root Object, which will be called either “Device” or “InternetGatewayDevice”.
The latter is used only for the TR-098 [3] InternetGatewayDevice:1 data model.

In most cases, the Root Object contains three types of sub-elements: the Common Objects defined in TR-181 [13]
(applicable only to the “Device” Root Object), Components defined in other specifications such as TR-143 [10] and
TR-157 [12] (applicable to both the “Device” and “InternetGatewayDevice” Root Objects), and a single “Services”
object that contains all Service Objects associated with specific services.

If the device implements the existing TR-098 [3] InternetGatewayDevice:1 data model, the Root Object will also
contain the application-specific objects associated with an Internet Gateway Device.

A single device might include more than one Service Object. For example, a device that serves both as a VolP
endpoint and a game device, might include both VVolP-specific and game-specific Service Objects.

A single device might also include more than one instance of the same type of Service Object. An example of when
this might be appropriate is a TR-069-enabled device that proxies the management functions for one or more other
devices that are not TR-069-enabled. In this case, the ACS would communicate directly only with the TR-069-
enabled device, which would incorporate the data models for all devices for which it is serving as a management
proxy. For example, a video device serving as a management proxy for three VoIP phones would contain in its data
model a video-specific Service Object plus three instances of a VolP-specific Service Object. Note that whether a

February 2010 © The Broadband Forum. All rights reserved. 10 of 87

http://en.wikipedia.org/wiki/MediaWiki

211

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

device is serving as a management proxy for another device or whether it has that functionality embedded in it is
generally opaque to the ACS.

Data Hierarchy Requirements

The data model for a TR-069-enabled [2] device (other than a device that implements the TR-098 [3] Internet-
GatewayDevice:1 data model) MUST adhere to the following structural requirements:

1) The data model MUST contain exactly one Root Object, called “Device”.

2) If (and only if) the Root Object major version (section 2.2) is 1, the Root Object MUST contain the
(DEPRECATED) “DeviceSummary” parameter as specified in section 3.7.

3) The Root Object MAY contain any of the Common Objects defined in TR-181 [13], and Components defined
in other specifications, e.g. TR-143 [10] or TR-157 [12], with the proviso that a Component that is defined as a
child of a Common Object can only be included if the Common Object is also included.

4) The Root Object MUST contain exactly one “Services” object.

5) The “Services” object MUST contain all of the Service Objects supported by the device. Each Service Object
contains all of the objects and parameters for a particular service.

6) The “Services” object MAY contain more than one Service Object, each corresponding to a distinct service
type.

7) The “Services” object MAY contain more than one instance of a Service Object of the same type.

8) Each Service Object instance MUST be appended with an instance number (assigned by the CPE) to allow for
the possibility of multiple instances of each. For example, if the device supports the Service Object
ABCService, the first instance of this Service Object might be “ABCService.1”.

9) For each supported type of Service Object, a corresponding parameter in the “Services” object MUST indicate
the number of instances of that Service Object type. If a particular Service Object type is supported by the
device but there are currently no instances present, this parameter MUST still be present with a value of zero.
The name of this parameter MUST be the name of the Service Object concatenated with “NumberOfEntries”.
For example, for a device that contains instances of ABCService, there MUST be a corresponding parameter in
the “Services” object called “ABCServiceNumberOfEntries”.

10) Each Service Object MAY contain additional copies of Secondary Common Obijects, i.e. any of the Common
Objects defined in TR-181 [13] other than ManagementServer and GatewayInfo (these two Common Objects
are directly related to CWMP, and do not make sense in a Service Object).

A device that implements the TR-098 [3] InternetGatewayDevice:1 data model MUST adhere to the above
requirements with the following exceptions:

1) The data model MUST contain exactly one Root Object, called “InternetGatewayDevice”.

2) The (DEPRECATED) “DeviceSummary” parameter MAY be absent only in an Internet Gateway Device that
supports the InternetGatewayDevice version 1.0 data model, as defined in section 2.4.2 of TR-098 [3], and no
Service Objects.*

3) The Root Object MAY contain any of the objects specific to an Internet Gateway Device as defined in TR-098
[3], and any Components defined in other specifications, e.g. TR-143 [10] or TR-157 [12], with the proviso that
a Component that is defined as a child of a Common Object can only be included if an Internet Gateway Device
object with the same name as the Common Object is also included.

4) The “InternetGatewayDevice” Root Object MUST NOT directly contain any of the Common Objects defined in
TR-181 [13]. While TR-098 [3] defines objects very similar to some of the Common Obijects, they are not

' The implication of this requirement is that a TR-098 [3] Internet Gateway Device that supports one or more
Service Objects (for example, the VVoiceService object defined in TR-104) is REQUIRED to support version 1.1
or greater of the InternetGatewayDevice Root Object.

February 2010 © The Broadband Forum. All rights reserved. 11 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

identical and MUST NOT be considered the same as the Common Objects. (Service Objects within the
“Services” object MAY, as in the non Internet Gateway Device case, contain Secondary Common Objects.)

5) The “Services” object MAY be absent if the device supports no Service Objects.

Formally, the top level of the data hierarchy is defined as follows:

Element = Root
| Root ".DeviceSummary"
| Root ".Services." ServiceObject "." Instance
| Root ".Services." ServiceObject "NumberOfEntries"
| Root ".Services." ServiceObject "." Instance "." SecondaryCommonObject
| Root "." ComponentObject
| DeviceRoot "." CommonObject
| DeviceRoot "." CommonCbject "." ComponentObject
| TR-098GatewayRoot "." TR-098GatewaySpecificObject
| TR-098GatewayRoot "." TR-098GatewaySpecificObject "." ComponentObject

Root = DeviceRoot
| TR-098GatewayRoot

DeviceRoot = "Device"

TR-098GatewayRoot = "InternetGatewayDevice"

CommonObject = // As defined in TR-181 [13], e.g. "UserInterface" or "ManagementServer"
SecondaryCommonObject = // CommonObject other than "ManagementServer" or "GatewayInfo"
TR-098GatewaySpecificObject = // As defined in TR-098 [3]

ComponentObject = // As defined in other specs, e.g. TR-143 [10] or TR-157 [12]

Instance = NONZERODIGIT [DIGIT]*

2.1.2 Data Hierarchy Examples

Below are some examples of data hierarchies for various types of devices. (Objects are shown in bold text,
parameters are shown in plain text.)

Simple device supporting the ABCService Service Object:

Device

DeviceSummary2

Devicelnfo

ManagementServer

Services
ABCServiceNumberOfEntries = 1
ABCService.l

ABCServiceSpecificObjects

Device supporting both ABCService and XY ZService Service Objects:

Device

DeviceSummary”

Devicelnfo

ManagementServer

Time

Userlnterface

Services
ABCServiceNumberOfEntries = 1
ABCService.1l

ABCServiceSpecificObjects

2 The (DEPRECATED) DeviceSummary parameter applies only to major version 1 of the “Device” Root Object.

February 2010 © The Broadband Forum. All rights reserved. 12 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

XYZServiceNumberOfEntries = 1
XYZService.l
XYZServiceSpecificObjects

TR-098 [3] Internet Gateway Device that also supports the ABCService and XY ZService Service Objects:

InternetGatewayDevice
DeviceSummary
Devicelnfo
ManagementServer
Time
Userlnterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1l
Services
ABCServiceNumberOfEntries = 1
ABCService.l
ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.l
XYZServiceSpecificObjects

Device supporting the ABCService Service Object and proxying for two devices supporting the functionality of the
XYZService Service Object:

Device
DeviceSummary”
Devicelnfo
ManagementServer
GatewaylInfo
Time
Userlinterface
Services
ABCServiceNumberOfEntries = 1
ABCService.1
ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 2
XYZService.l
Devicelnfo
XYZServiceSpecificObjects
XYZService.2
Devicelnfo
XYZServiceSpecificObjects

TR-098 [3] Internet Gateway Device also serving as a management proxy for three devices supporting the
functionality of the ABCService Service Object:

InternetGatewayDevice
DeviceSummary
Devicelnfo
ManagementServer
Time
Userlnterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1l

February 2010 © The Broadband Forum. All rights reserved. 13 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Services
ABCServiceNumberOfEntries = 3
ABCService.1

Devicelnfo

ABCServiceSpecificObjects
ABCService.2

Devicelnfo

ABCServiceSpecificObjects
ABCService.3

Devicelnfo

ABCServiceSpecificObjects

2.1.3 The Supported Data Model and the Instantiated Data Model

2.2

There is a distinction between a TR-069-enabled [2] device’s Supported Data Model and its Instantiated Data
Model.

e The Supported Data Model is those Objects and/or Parameters that have code support in the CPE.
e The Instantiated Data Model is those Object instances and/or Parameters that currently exist.

TR-157 [12] defines a SupportedDataModel Object (a sub-object of the Devicelnfo Common Object) that allows a
TR-069-enabled device to indicate its Supported Data Model to the ACS, which assists the ACS in managing that
device.

The SupportedDataModel object has the following properties:

1) It contains a list of URLS, each of which allows the ACS to determine details of part of the Supported Data
Model.

2) When the Supported Data Model changes, e.g. because software is loaded or unloaded, entries are added to or
removed from this list of URLSs.

3) Devicelnfo is a Secondary Common Object (see section 2.1.1), and so can be contained within both Root
Obijects and Service Objects. However, the SupportedDataModel object is permitted only with a Root Object’s
Devicelnfo and MUST NOT be contained within a Service Object’s Devicelnfo instance. It therefore describes
the Supported Data Model for both the TR-069-enabled device and for any devices for which it is acting as a
management proxy.

Object Versioning

To allow the definition of a Service Object or Root Object to change over time, the definition of a Service Object or
Root Object MUST have an explicitly specified version.

Version numbering of Service Objects and Root Objects is defined to use a major/minor version numbering
convention. The object version is defined as a pair of integers, where one integer represents the major version, and
the second integer represents the minor version. The version MUST be written with the two integers separated by a
dot (Major.Minor).

The first version of a given object SHOULD be defined as version “1.0”.

For each subsequent version of the object, if the later version is compatible with the previous version, then the major
version SHOULD remain unchanged, and the minor version SHOULD be incremented by one. For example, the
next compatible version after “2.17” would be “2.18”. The requirements for a version to be considered compatible
with an earlier version are described in section 2.2.1.

For each subsequent version of the object, if the later version is not compatible with the previous version, then the
major version MUST increment by one, and the minor version MAY reset back to zero. For example, the next
incompatible version after “2.17” might be “3.0”.

February 2010 © The Broadband Forum. All rights reserved. 14 of 87

221

2.2.2

2.3

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Requirements for Compatible Versions

For one version of an object to be considered compatible with another version, the later version MUST be a strict
superset of the earlier version. Using major/minor versioning, this requirement applies only between minor versions
that share the same major version.

More specifically, this requires the following of the later version with respect to all earlier versions to which it is to
be compatible:

e The later version MAY add objects and parameters not previously in any earlier version, but MUST NOT
remove objects or parameters already defined in earlier versions.

e The later version MUST NOT maodify the definition of any parameter or object already defined in an earlier
version (unless the original definition was clearly in error and has to be modified as an erratum or clarified
through a corrigendum process).

e The later version MUST NOT require any of the objects or parameters that have been added since the earliest
compatible version to be explicitly operated upon by the ACS to ensure proper operation of the device (except
those functions specifically associated with functionality added in later versions). That is, the later version will
accommodate an ACS that knows nothing of elements added in later versions.

The goal of the above definition of compatibility is intended to ensure bi-directional compatibility between an ACS
and CPE. Specifically that:

e Ifan ACS supports only an earlier version of an object as compared to the version supported by the CPE, the
ACS can successfully manage that object in the CPE as if it were the earlier version.

e Ifa CPE supports only an earlier version of an object as compared to the version supported by an ACS, the ACS
can successfully manage that object in the CPE as if it were the later version (without support for new
components defined only in later versions).

Version Notation
For objects, the following notation is defined to identify specific versions:

Notation Description Example

ObjectName:Major.Minor Refers to a specific version of the object. Device:1.0

ObjectName:Major Refgrs to any minor version of the object with the specified major Device:1
version.

ObjectName Refers to any version of the object. Device

Note that the version notation defined here is only to be used for purposes of documentation and in the content of the
DeviceSummary parameter defined in section 3.7. The actual names of objects and parameters in the data model
MUST NOT include version numbers.

Profiles

Note: Originally, profiles were seen as a means of limiting the variability that an ACS needs to accommodate among
various devices that it might manage. This feature is now provided by the TR-157 [12] SupportedDataModel object
(see section 2.1.3) and associated Device Type XML documents (DT Instances).

A profile is a named collection of requirements associated with a given object. A device can adhere to zero or more
profiles. Adherence to a profile means that the device supports all of the requirements defined by that profile. The
use of profiles gives Service Providers a shorthand means of specifying CPE data model support requirements.

The following sections define the conventions to be used when defining profiles associated with TR-069 [2] data
models.

February 2010 © The Broadband Forum. All rights reserved. 15 of 87

23.1

2.3.2

2.3.3

234

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Scope of Profiles

A given profile is defined only in the context of a specific Service Object or Root Object with a specific major
version. For each profile definition, the specific object name and major version to which the profile is to apply
MUST be explicitly identified.

A profile’s name MUST be unique among profiles defined for the same object and major version, but a name MAY
be reused to define a different profile for a distinct combination of object name and major version. For example, if
we define profile “A” associated with object “X:2” (major version 2 of object X), the same name “A” might be used
to define a different profile for object “Y:1” or for object “X:3”.

A given profile is defined in association with a minimum minor version of a given object. The minimum
REQUIRED version of an object is the minimum version that includes all of the REQUIRED elements defined by
the profile. For each profile definition, the specific minimum version MUST be explicitly identified.

Multiple Profile Support

For a given type of Service Object or Root Object, multiple profiles MAY be defined. Profiles MAY be defined that
have either independent or overlapping requirements.

To maximize interoperability, a device that fully implements the (DEPRECATED) DeviceSummary parameter
(section 3.7) MUST indicate all profiles that it supports. That is, it has to indicate all profiles whose definition is a
subset of the support provided by that device. Doing so maximizes the likelihood that an ACS will be aware of the
definition of the indicated profiles. For example, if profile “A” is a subset of profile “B”, and a device supports
both, by indicating support for both “A” and “B” an ACS that is unaware of profile “B” will at least recognize the
device’s support for profile “A”.

Profile Versions

To allow the definition of a profile to change over time, the definition of every profile MUST have an associated
version number.

Version numbering of profiles is defined to use a minor-only version numbering convention. That is, for a given
profile name, each successive version MUST be compatible with all earlier versions. Any incompatible change to a
profile MUST use a different profile name.

For one version of a profile to be considered compatible with another version, the later version MUST be a strict
superset of the earlier version. This requires the following of the later version with respect to all earlier versions to
which it is to be compatible:

e The later version MAY add requirements that were not in earlier versions of the profile, but MUST NOT
remove requirements.

e The later version MAY remove one or more conditions that had previously been placed on a requirement. For
example, if a previous profile REQUIRED X only if condition A was True, then the later profile might require
X unconditionally.

For profiles, the following notation is defined to identify specific versions:

Notation Description Example
ProfileName:Version Refers to a specific version of the profile. Baseline:1
ProfileName Refers to any version of the profile. Baseline

ProfileName MUST start with a letter or underscore, and subsequent characters MUST be letters, digits, underscores
or hyphens. The terms “letter” and “digit” are as defined in Appendix B of the XML specification [8].

Baseline Profiles

For every Service Object (and Root Object) there SHOULD be at least one profile defined. In many cases it is
desirable to define a Baseline profile that indicates the minimum requirements REQUIRED for any device that
supports that object. Where a Baseline profile is defined, and if the (DEPRECATED) DeviceSummary parameter

February 2010 © The Broadband Forum. All rights reserved. 16 of 87

2.35

2.4

24.1

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

(section 3.7) is fully implemented, it would normally be expected that all implementations of the corresponding
object would indicate support for the Baseline profile in addition to any other profiles supported.

Types of Requirements in a Profile

Because a profile is defined within the context of a single object (and major version), all of the requirements
associated with the profile MUST be specific to the data model associated with that object.

Profile requirements can include any of the following types of requirements associated with an object’s data model:
¢ A requirement for read support of a Parameter.

¢ A requirement for write support of a Parameter.

o A requirement for support of a sub-object contained within the overall object.

o A requirement for the ability to add or remove instances of a sub-object.

o A requirement to support active notification for a Parameter.

o A requirement to support access control for a given Parameter.

For each of the requirement categories listed above, a profile can define the requirement unconditionally, or can
place one or more conditions on the requirement. For example, a profile might require that a Parameter be
supported for reading only if the device supports some other parameter or object (one that is not itself REQUIRED
by the profile). Such conditions will be directly related to the data model of the overall object associated with the
profile.

Because a device has to be able to support multiple profiles, all profiles MUST be defined such that they are non-
contradictory. As a result, profiles MUST only define minimum requirements to be met, and MUST NOT specify
negative requirements. That is, profiles will not include requirements that specify something that is not to be
supported by the device, or requirements that exclude a range of values.

DEPRECATED and OBSOLETED Items

The key word “DEPRECATED” in the data model definition for any TR-069-enabled [2] device is to be interpreted
as follows: This term refers to an object, parameter or parameter value that is defined in the current version of the
standard but is meaningless, inappropriate, or otherwise unnecessary. It is intended that such objects, parameters or
parameter values will be removed from the next major version of the data model. Requirements on how to interpret
or implement deprecated objects, parameters or parameter values are given below. For more information on how to
interpret or implement specific deprecated objects, parameters or parameter values, refer to the definition of the
object or parameter.

The key word “OBSOLETED” in the data model definition for any TR-069-enabled [2] device is to be interpreted
as follows: This term refers to an object, parameter or parameter value that meets the requirements for being
deprecated, and in addition is obsolete. Such objects, parameters or parameter values can be removed from a later
minor version of a data model, or from a later version of a profile, without this being regarded as breaking
backwards compatibility rules. Requirements on how to interpret or implement obsoleted objects, parameters or
parameter values are given below. For more information on how to interpret or implement specific obsoleted
objects, parameters or parameter values, refer to the definition of the object or parameter.

Requirements for DEPRECATED Items

This section defines requirements that apply to all DEPRECATED objects, parameters and parameter values unless
specifically overridden by the object or parameter definition.

Data model requirements:

1) The definition of a DEPRECATED parameter, object or parameter value MUST include an explanation of
why the item is deprecated.

2) The definition of a DEPRECATED parameter, object or parameter value MAY specify further
requirements relating to the item; such requirements MAY override CPE or ACS requirements specified in
this section.

February 2010 © The Broadband Forum. All rights reserved. 17 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

CPE requirements:

1) A DEPRECATED parameter MUST have a value which is valid for its data type and fulfils any range (for
numeric parameters), length (for string, base64 or hexBinary parameters) and enumerated value (for string
parameters) requirements.

2) Detailed behavioral requirements for a DEPRECATED parameter, e.g. that its value is a unique key, MAY
be ignored by the CPE.

3) The CPE MUST, if such operations are permitted by the data model definition, permit creation of
DEPRECATED objects, modification of DEPRECATED parameters, and setting of DEPRECATED
parameter values. However, it MAY choose not to apply such changes to its operational state.

4) Regardless of whether DEPRECATED changes are applied to the CPE operational state, a read of a
DEPRECATED writable parameter SHOULD return the value that was last written, i.e. the CPE is
expected to store the value even if it chooses not to apply it to its operational state.

5) The CPE MAY reject an attempt by the ACS to set any parameter to a DEPRECATED value.
ACS requirements:

1) The ACS SHOULD NOT create DEPRECATED objects, modify DEPRECATED parameters, or set
DEPRECATED parameter values.

2) The ACS SHOULD ignore DEPRECATED objects, parameters and parameter values.

3) The ACS SHOULD NOT set a DEPRECATED parameter to a value that is invalid for its data type or fails
to fulfill any range (for numeric parameters), length (for string, base64 or hexBinary parameters) or
enumerated value (for string parameters) requirements.

4) The ACS SHOULD NOT set any parameter to a DEPRECATED value.

2.4.2 Requirements for OBSOLETED Items

3.1

This section defines requirements that apply to all OBSOLETED objects, parameters or parameter values unless
specifically overridden by the object or parameter definition.

An OBSOLETED object, parameter or parameter value MUST meet all the requirements of the previous section. In
addition, the following data model requirements apply.

1) An OBSOLETED object, parameter or parameter value MAY be removed from a later minor version of a
data model without this being regarded as breaking backwards compatibility rules.

2) An OBSOLETED object, parameter or parameter value MUST NOT be removed from the current version
of a profile, but MAY be removed from a later version of a profile without this being regarded as breaking
backwards compatibility rules.

3) A data model definition MUST include a list of those OBSOLETED objects, parameters or parameter
values that have been removed from the data model or from its profiles. This is to prevent future
namespace conflicts.

Object Definitions

General Notation

Parameter names use a hierarchical form similar to a directory tree. The name of a particular Parameter is
represented by the concatenation of each successive node in the hierarchy separated with a “.”” (dot), starting at the
trunk of the hierarchy and leading to the leaves. When specifying a partial path, indicating an intermediate node in

[T

the hierarchy, the trailing “.”” (dot) is always used as the last character.

Parameter names MUST be treated as case sensitive. The name of each node in the hierarchy MUST start with a
letter or underscore, and subsequent characters MUST be letters, digits, underscores or hyphens. The terms “letter”
and “digit” are as defined in Appendix B of the XML specification [8].

February 2010 © The Broadband Forum. All rights reserved. 18 of 87

3.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

In some cases, where multiple instances of an object can occur, the placeholder node name “{i}” is shown. In actual
use, this placeholder is to be replaced by an instance number, which MUST be a positive integer (> 1). Because in
some cases object instances can be deleted, instance numbers will in general not be contiguous.

Data Types

Parameters make use of a limited subset of the default SOAP data types [5]. The complete set of data types along
with the notation used to represent these types is listed in Table 1.

Table 1 — Data Types

Type Description

object A container for parameters and/or other objects. The full path name of a parameter is given by the parameter
name appended to the full path name of the object it is contained within.

string For strings, a minimum and maximum allowed length can be indicated using the form string(Min:Max), where Min
and Max are the minimum and maximum string length in characters. If either Min or Max are missing, this
indicates no limit, and if Min is missing the colon can also be omitted, as in string(Max). Multiple comma-
separated ranges can be specified, in which case t hge
suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.
For all strings a maximum length is either explicitly indicated or implied by the size of the elements composing the
string. For strings in which the content is an enumeration, the longest enumerated value determines the maximum
length. If a string does not have an explicitly indicated maximum length or is not an enumeration, the default
maximum is 16 characters.
When transporting a string value within an XML document, any characters which are special to XML MUST be
escaped as specified by the XML specification [8]. Additionally, any characters other than printable ASCII
characters, i.e. any characters whose decimal ASCII representations are outside the (inclusive) ranges 9-10 and
32-126, SHOULD be escaped as specified by the XML specification.

int Integer in the range —2147483648 to +2147483647, inclusive.
For some int types, a value range is given using the form int{Min:Max], where the Min and Max values are
inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated ranges can be
specif i ed, in which case the value MUST be in one of t
1000) multiplier, e.g. 32k means 32768.

long Long integer in the range —9223372036854775808 to 9223372036854775807, inclusive.
For some long types, a value range is given using the form long[Min:Max], where the Min and Max values are
inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated ranges can b
specified, in which case the value MUST beinoneofthe r anges. A “k” or “K” suf
1000) multiplier, e.g. 32k means 32768.

unsignedint Unsigned integer in the range 0 to 4294967295, inclusive.

For some unsignedint types, a value range is given using the form unsignedint[Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated ranges

can be specified, in which case the value MUST be inr
1024 (not 1000) multiplier, e.g. 32k means 32768.

unsignedLong

Unsigned long integer in the range 0 to 18446744073709551615, inclusive.

For some unsignedLong types, a value range is given using the form unsignedLong[Min:Max], where the Min and
Max values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated

ranges can be specified, in which case the value MUF
as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

boolean Bool ean, where the allowed values are “0”, “17", “tr|
interchangeable, where both equivalently represent the logical value true. Similarly, the vi{
considered interchangeable, where both equivalently represent the logical value false.

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.

All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise in the
definition of a parameter of this type.

If absolute time is not available to the CPE, it SHOULD instead indicate the relative time since boot, where the
boot time is assumed to be the beginning of the first day of January of year 1, or 0001-01-01T00:00:00. For
example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be expressed as 0001-01-03T03:04:05.
Relative time since boot MUST be expressed using an untimezoned representation. Any untimezoned value with
a year value less than 1000 MUST be interpreted as a relative time since boot.

If the time is unknown or not applicable, the foll oy
01-01T00:00:00Z.

Any dateTime value other than one expressing relative time since boot (as described above) MUST use timezoned
representation (that is, it MUST include a timezone suffix).

February 2010

© The Broadband Forum. All rights reserved. 19 of 87

3.3

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Type Description

base64 Base64 encoded binary (no line-length limitation).
A minimum and maximum allowed length can be indicated using the form base64(Min:Max), where Min and Max
are the minimum and maximum length in characters before Base64 encoding. If either Min or Max are missing,
this indicates no limit, and if Min is missing the colon can also be omitted, as in base64(Max). Multiple comma-
separatedrangesc an be specified, in which case the |l ength |
interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.
Note that data models defined prior to the introduction of the DM Schema specified the length after Base64
encoding. If the length after encoding is n (which is always a multiple of 4), the length before encoding is m =
(n/4)*3, m-1 or m-2.

hexBinary Hex encoded binary.

A minimum and maximum allowed length can be indicated using the form hexBinary(Min:Max), where Min and

Max are the minimum and maximum length in characters before Hex Binary encoding. If either Min or Max are
missing, this indicates no limit, and if Min is missing the colon can also be omitted, as in hexBinary(Max). Multiple
commaseparated ranges can be specified, in which case
suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

All IPv4 addresses and subnet masks are represented as strings in IPv4 dotted-decimal notation. All IPv6 addresses
and subnet masks MUST be represented using any of the 3 standard textual representations as defined in RFC 3513
[6], sections 2.2.1, 2.2.2 and 2.2.3. Both lower-case and upper-case letters can be used. Use of the lower-case
letters is RECOMMENDED. Examples of valid IPv6 address textual representations:

e 1080:0:0:800:ba98:3210:11aa:12dd

e 1080::800:ba98:3210:11aa:12dd

e (0:0:0:0:0:0:13.1.68.3

Unspecified or inapplicable IP addresses and subnet masks MUST be represented as empty strings unless otherwise
specified by the parameter definition.

All MAC addresses are represented as strings of 12 hexadecimal digits (digits 0-9, letters A-F or a-f) displayed as
six pairs of digits separated by colons. Unspecified or inapplicable MAC addresses MUST be represented as empty
strings unless otherwise specified by the parameter definition.

For unsignedInt parameters that are used for statistics, e.g. for byte counters, the actual value of the statistic might be
greater than the maximum value that can be represented as an unsignedint. Such values SHOULD wrap around
through zero. The term “packet” is to be interpreted as the transmission unit appropriate to the protocol layer in
question, e.g. an IP packet or an Ethernet frame.

For strings that are defined to contain comma-separated lists, the format is defined as follows. Between every pair
of successive items in a comma-separated list there MUST be a separator. The separator MUST include exactly one
comma character, and MAY also include one or more space characters before or after the comma. The entire
separator, including any space characters, MUST NOT be considered part of the list items it separates. The last item
in a comma-separated list MUST NOT be followed with a separator. Individual items in a comma-separated list
MUST NOT include a space or comma character within them. If an item definition requires the use of spaces or
commas, that definition MUST specify the use of an escape mechanism that prevents the use of these characters.

For string parameters whose value is defined to contain the full hierarchical name of an object, the representation of
the object name MUST NOT include a trailing “dot.” An example of a parameter of this kind in the TR-098 [3]
InternetGatewayDevice:1 data model is InternetGatewayDevice.Layer3Forwarding.DefaultConnectionService. For
this parameter, the following is an example of a properly formed value:

InternetGatewayDevice. WANDevice.1.WANConnectionDevice.2. WANPPPConnection.1

Vendor-Specific Parameters

A vendor MAY extend the standardized parameter list with vendor-specific parameters and objects. Vendor-
specific parameters and objects MAY be defined either in a separate naming hierarchy or within the standardized
naming hierarchy.

February 2010

© The Broadband Forum. All rights reserved. 20 of 87

3.4

3.5

3.6

3.7

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment

The name of a vendor-specific parameter or object not contained within another vendor-specific object MUST have
the form:

X_<VENDOR>_VendorSpecificName

In this definition <VENDOR> is a unique vendor identifier, which MAY be either an OUI or a domain name. The
OUI or domain name used for a given vendor-specific parameter MUST be one that is assigned to the organization
that defined this parameter (which is not necessarily the same as the vendor of the CPE or ACS). An OUl is an
organizationally unique identifier as defined in [4], which MUST be formatted as a six-hexadecimal-digit string
using all upper-case letters and including any leading zeros. A domain name MUST be upper case with each dot
(“.”) replaced with a hyphen or underscore.

The VendorSpecificName MUST be a valid string as defined in 3.2, and MUST NOT contain a “.” (period) or a
space character.

Note7 theuseofthest r i ng A X _ 0 t o-specificharameter implies that r® stashdandized
parameter can begin with AX_o0.

The name of a vendor-specific parameter or object that is contained within another vendor-specific object which
itself begins with the prefix described above need not itself include the prefix.

The full path name of a vendor-specific parameter or object MUST NOT exceed 256 characters in length.

Below are some example vendor-specific parameter and object names:
Device.UserInterface.X_012345_AdBanner
Device.X_EXAMPLE-COM_MyConfig.Status
When appropriate, a vendor MAY also extend the set of values of an enumeration. If this is done, the vendor-

specified values MUST be in the form “X <VENDOR> VendorSpecificValue”. The total length of such a string
MUST NOT exceed 31 characters.

Common Object Definitions (Removed)
Common Object Definitions moved to TR-181 [13].

Inform Requirements (Removed)
Inform Requirements moved to TR-181 [13].

Notification Requirements (Removed)
Notification Requirements moved to TR-181 [13].

DeviceSummary Definition

Note i the DeviceSummary parameter is DEPRECATED. This is because the TR-157 [12]
SupportedDataModel object (see section 2.1.3) and associated Device Type XML documents (DT

Il nstances) provide a more granular and scal
DeviceSummary. Therefore the value of DeviceSummary MAY be an empty string if (and only if) the
SupportedDataModel object is supported.

The DeviceSummary parameter is defined to provide an explicit summary of the top-level data model of the device,
including version and profile information. This parameter MAY be used by an ACS to discover the nature of the
device and the ACS’s compatibility with specific objects supported by the device.

The DeviceSummary is defined as a list that includes the Root Object followed by all Service Object instances (or
support for a Service Object type if no instances are currently present). For each of these objects, the
DeviceSummary specifies the version of the object, the associated instance number used to identify the specific
object instance, and a list of the supported profiles for that object.

The syntax of the DeviceSummary parameter is defined formally as follows:

4

abl

February 2010 © The Broadband Forum. All rights reserved. 21 of 87

e

way

3.7.1

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

DeviceSummary = RootObject [", " ServiceObject]*

RootObject = ObjectName ":" ObjectVersion "[] (" Profilelist ")"

ServiceObject = ObjectName ":" ObjectVersion "[" [Instance] "] (" ProfileList ")"
ObjectVersion = MajorVersion "." MinorVersion

ProfilelList = [Profile [", " Profile]*]

Profile = ProfileName ":" ProfileVersion

MajorVersion = Integer
MinorVersion = Integer
ProfileVersion = Integer

Integer = DIGIT*

Instance = ["+"] NONZERODIGIT [DIGIT]*

For each object instance, the ObjectVersion element MUST indicate the major and minor versions of the object
supported by the device.

The ObjectVersion for all objects for which explicit major and minor version numbers have not been defined is 1.0.
Future updates to these objects will specify distinct version numbers.

Instance is the instance number of the particular object instance. If the device supports an object type, but no
instances are currently present, a single entry for this object MUST be listed in the DeviceSummary, and the
instance number MUST be empty (" [1"). In this case, the device need not list support for specific profiles since the
profile list might be dependent on the specific instance when it is instantiated.

If the instance number for an object might change (for example, if the instances represent physically separate
devices, being managed by proxy, that can be connected or disconnected), the instance number MUST be prefixed
with a “+” character. Lack of a “+” character indicates that the instance number is expected to remain unchanged.

For each object (Root Object and Service Objects), a device MUST list all profiles that it supports in the ProfileList
element. That is, it MUST list all profiles for which the device’s actual level of support is a superset. Each entry in
the ProfileList MUST include the ProfileName and the ProfileVersion. The ProfileVersion is a single integer
representing the minor version of the profile.

Vendor-specific objects and profiles MAY be included in this list, and if so MUST begin with X_<VENDOR>_,
where <VENDOR> MUST be as defined in section 3.3.

DeviceSummary Examples

Below are some examples of the DeviceSummary parameter. (The first examples correspond directly to the
examples given in section 2.1.2.)

Simple device supporting the ABCService Service Object:
“Device:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1)”

Device supporting both ABCService and XY ZService Service Objects:
“Device:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1), XYZService:1.0[1](Baseline:1)”

TR-098 [3] Internet Gateway Device that also supports the ABCService and XY ZService Service Objects:
“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1), XYZService:1.0[1](Baseline:1)”

February 2010 © The Broadband Forum. All rights reserved. 22 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Device supporting the ABCService Service Object and proxying for two devices supporting the functionality of the
XYZService Service Object:

“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1), XYZService:1.2[1](Baseline:2),
XYZService:1.2[2](Baseline:2, AnotherProfile:3)”
TR-098 [3] Internet Gateway Device also serving as a management proxy for three devices supporting the
functionality of the ABCService Service Object:
“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1), ABCService:1.0[2](Baseline:1),
ABCService:1.0[3](Baseline:1, AnotherProfile:1)”
TR-098 [3] Internet Gateway Device with no additional service objects supported:
“InternetGatewayDevice:1.0[](Baseline:1)”
Device supporting the ability to proxy for devices supporting the functionality of the ABCService Service Object,
but with no current instances of that object:
“Device:1.0[](Baseline:1), ABCService:2.17[]()”

Device supporting the ABCService Service Object with the baseline and a vendor-specific profile:
“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1, X_EXAMPLE-COM_MyProfile:2)”

Device supporting the ABCService Service Object, but with no profiles:
“Device:1.0[](Baseline:1), ABCService:2.17[1]()”

Profile Definitions (Removed)
Profile Definitions moved to TR-181 [13].

February 2010 © The Broadband Forum. All rights reserved. 23 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Normative References

A list of the currently valid Broadband Forum Technical Reports is published at http://www.broadband-forum.org.
The following documents are referenced by this specification.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt
[2] TR-069 Amendment 2, CPE WAN Management Protocol, Broadband Forum Technical Report
[3] TR-098 Amendment 2, Internet Gateway Device Data Model for TR-069, Broadband Forum Technical Report

[4] Organizationally Unique Identifiers (OUls), http://standards.ieee.org/fags/OUl.html

[5] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508

[6] RFC 3513, Internet Protocol Version 6 (IPv6) Addressing Architecture, http://www.ietf.org/rfc/rfc3513.txt
[7] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt

[8] Extensible Markup Language (XML) 1.0 (Fourth Edition), http://www.w3.org/TR/REC-xml

[9] RFC 2648, A URN Namespace for IETF Documents, http://www.ietf.org/rfc/rfc2648.txt

[10] TR-143 Corrigendum 1, Enabling Network Throughput Performance Tests and Statistical Monitoring,
Broadband Forum Technical Report

[11] XML Schema Part 0: Primer Second Edition, http://www.w3.org/TR/xmlschema-0
[12] TR-157 Amendment 1, Component Objects for CWMP, Broadband Forum Technical Report
[13] TR-181 Issue 1, TR-181 Issue 2, Device Data Model for TR-069, Broadband Forum Technical Report

February 2010 © The Broadband Forum. All rights reserved. 24 of 87

http://www.broadband-forum.org/
http://www.ietf.org/rfc/rfc2119.txt
http://standards.ieee.org/faqs/OUI.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.ietf.org/rfc/rfc3513.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc2648.txt
http://www.w3.org/TR/xmlschema-0

Al

A.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Annex A. CWMP Data Model
Definition XML Schema

Introduction

The CWMP Data Model Definition XML Schema [11], or DM Schema, is used for defining TR-069 [2] data
models, and is specified in A.3.

DM Schema instance documents can contain any or all of the following:
o Data type definitions

e Root Object definitions (including profiles)

e Service Object definitions (including profiles)

e Component definitions

e Vendor extension definitions

Normative Information

It is possible to create instance documents that conform to the DM Schema but nevertheless are not valid data model
definitions. This is because it is not possible to specify all the normative data model definition requirements using
the XML Schema language. Therefore, the schema contains additional requirements written using the usual
normative language. Instance documents that conform to the DM Schema and meet these additional requirements
are referred to as DM Instances.

For example, the definition of the parameter element includes the following additional requirements on the name
and base attributes:

<xs:complexType name="ModelParameter">
<xs:annotation>
<xs:documentation>Parameter definition and reference.</xs:documentation>
</xs:annotation>
é
<xs:attribute name="name" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be unique within the parent object (this is checked by schema
validation) .
MUST be present if and only if defining a new parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be present if and only if modifying an existing
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
é
</xs:complexType>

In some cases, a requirement that is in fact implied by the DM Schema is emphasized within the schema via the
xs:documentation element (the uniqueness requirement on the name is an example of this).

February 2010 © The Broadband Forum. All rights reserved. 25 of 87

A.21

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

In other cases, a schema-implied requirement is not highlighted. For example, the name and base attributes are of
type tns:ParameterName:

<!DOCTYPE cwmp-datamodel [
e
<!ENTITY name " ([\i-[:]1][\c-[:\.]]1*)">
é
1>
é
<xs:simpleType name="ParameterName'">
<xs:annotation>
<xs:documentation>Parameter name (maximum length 256); the same as xs:NCName except that periods
are not permitted. This name MUST in addition follow the vendor-specific
parameter name requirements of section 3.3.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="256"/>
<xs:pattern value="&name;"/>
</xs:restriction>
</xs:simpleType>

This states that the parameter name is a string that follows the following rules:

e Itis derived from xs:token, which has a whitespace facet of “collapse”, meaning that any leading whitespace in
the name will be ignored.

e It has a maximum length of 256 characters.

e Its first character matches the pattern “[\i-[:]]”, which means “any character permitted as the first character of an
XML name, except for a colon”, and any subsequent characters match the pattern “[\c-[:\.]]”, which means “any
character permitted in an XML name, except for a colon and a dot”.

o It follows the vendor-specific parameter name requirements of section 3.3.
The question of the location of the definitive normative information therefore arises. The answer is as follows:
e All the normative information in the main part of the document remains normative.

e The DM Schema, and the additional requirements therein, are normative. Some of these additional
requirements are duplicated (for emphasis) in this Annex.

e The DM Schema references additional material in this Annex. Such material is normative.
e If the DM Schema conflicts with a normative requirement in the main part of the document, this is an error in
the DM Schema, and the requirement in the main part of the document takes precedence.

Importing DM Instances

DM Instances are imported using the top-level import element. The DM Schema specifies that the DM Instance is
located via the file attribute if it is present, and otherwise via the spec attribute (although both attributes are optional,
they cannot both be omitted).

When the file attribute is present, the rules governing its value and its use for locating the DM Instance are as
follows:

e It MUST be a URL adhering to RFC 3986 [7].
e Ifthe URL includes a scheme, it MUST be http, https or ftp.
e Ifthe URL includes an authority, it MUST NOT include credentials.

e For standard BBF DM Instances, the rules that apply to the filename part (final path segment) of the A.2.1.1
BBFURL MUST be applied to the filename part of this URL. This means that the corrigendum number can be
omitted in order to refer to the latest corrigendum.

o Ifthe URL is a relative reference, processing tools MUST apply their own logic, e.g. apply a search path.

February 2010 © The Broadband Forum. All rights reserved. 26 of 87

A211

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

When the file attribute is absent, the rules governing the value and use of the spec attribute for locating the DM
Instance are as follows:

e Ifit begins with the string “urn:broadband-forum-org:”, it MUST be a BBFURI as defined in A.2.1.1, in which
case the DM Instance can be accessed at the BBFURL that is also defined in A.2.1.1.

e Otherwise, it can be used to locate the DM Instance only if processing tools understand the non-standard URI
format.

The above rules suggest the following recommendations:

e For accessing DM Instances that are BBF standards, the file attribute SHOULD NOT be specified, implying
that the spec attribute will be specified and will be used to locate the standard BBF DM Instance. For example:

<import spec="urn:broadband-forum-org:tr-157-1-0">
<model name="Device:1.3"/>
</import>

e Foraccessing DM Instances that are not BBF standards, the file attribute SHOULD be specified, implying that
it will be used to locate the non-standard DM Instance. For example:

<import file="http://example.com/device-1-0.xml">
<model name="X EXAMPLE Device:1.0"/>
</import>

URI Conventions

The top-level spec attribute contains the URI of the associated specification document, e.g. the BBF Technical
Report.

This URI SHOULD uniquely identify the specification. More than one DM Schema instance document MAY
reference the same specification.

The following rules apply to the value of the top-level spec attribute:

e For a BBF Technical Report, it MUST be of the form “urn:broadband-forum-org:tr-nnn-i-a-c”, where nnn is the
specification number (including leading zeros), i is the issue number, a is the amendment number, and c is the
corrigendum number. The issue, amendment and corrigendum numbers do not include leading zeros. For
example, “urn:broadband-forum-org:tr-106-1-0" refers to TR-106 (Issue 1 Amendment 0), and “urn:broadband-
forum-org:tr-106-1-2” refers to TR-106 (Issue 1) Amendment 2. If the corrigendum number (including the
preceding hyphen) is omitted, the most recent corrigendum is assumed.

e For specifications issued by other standards organizations, or by vendors, it SHOULD be of a standard form if
one is defined. For example, RFC 2648 [9] specifies a syntax for referencing RFCs.

¢ Note that processing tools are likely to assume that all files that share a spec value are related to each other.
Therefore, use of meaningful spec values is RECOMMENDED.

Formally, the value of the spec attribute is defined as follows:

February 2010 © The Broadband Forum. All rights reserved. 27 of 87

A.2.2

A2.21

A.2.2.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

SpecURI = BBFURI
| OtherURI

BBFURI = "urn:broadband-forum-org:" BBFDoc
BBFDoc = "tr-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum

BBFNumber = [DIGIT]{3,} // including leading zeros, e.g. 069

BBFIssue = "-" NoleadingZeroPositiveNumber
BBFAmendment = "-" NoLeadingZeroNumber
BBFCorrigendum = "-" NoLeadingZeroPositiveNumber

[// if omitted, most recent corrigendum is assumed

NoLeadingZeroNumber = [DIGIT]
| [NONZERODIGIT] [DIGIT]*

NoLeadingZeroPositiveNumber = [NONZERODIGIT] [DIGIT]*

OtherURI = <of a standard form if one is defined>

Standard BBF DM Instances can be accessed at the following URL.:

BBFURL = "http://www.broadband-forum.org/cwmp/" BBFDoc BBFSubDoc ".xml"
BBFDoc = <as before>

BBFSubDoc = "-" ILABEL // distinguishing label (not beginning with a digit)
[// not needed if only one DM Instance is associated with spec

For example, the DM Instance associated with TR-106 Amendment 2 can be accessed at http://www.broadband-
forum.org/cwmp/tr-106-1-2.xml. If two DM Instances had been associated with TR-106 Amendment 2, they might
have been accessible at http://www.broadband-forum.org/cwmp/tr-106-1-2-types.xml and http://www.broadband-
forum.org/cwmp/tr-106-1-2-objects.xml.

Descriptions

Many elements have descriptions, and the same rules apply to all description elements in the DM Schema. A
description is free text which can contain a limited amount of MediaWiki-like markup as specified in A.2.2.3.

Character Set

For BBF standards, the character set MUST be restricted to printable characters in the Basic Latin Unicode block,
i.e. to characters whose decimal ASCII representations are in the (inclusive) ranges 9-10 and 32-126.

Pre-processing

All DM Instance processing tools MUST conceptually perform the following pre-processing before interpreting the
markup:

1) Remove any leading whitespace up to and including the first line break®.

2) Remove the longest common whitespace prefix (i.e. that occurs at the start of every line) from each line. See the
example below, where three lines start with four spaces and one line starts with five spaces, so the longest
whitespace prefix that occurs at start of each line is four spaces. In this calculation, a tab character counts as a
single character. To avoid confusion, the description SHOULD NOT contain tab characters.

3) Remove all trailing whitespace, including line breaks.

® It can be assumed that all line breaks are represented by a single line feed, i.e. ASCII 10. See [8] section 2.11.

February 2010 © The Broadband Forum. All rights reserved. 28 of 87

http://www.broadband-forum.org/cwmp/tr-106-1-2.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2.xml

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 4

This pre-processing is designed to permit a reasonable variety of layout styles while still retaining predictable
behavior. For example, both the following:

<description>This is the first line.
This is the second line.

This is the indented third line.

This is the fourth line.</description>

<description>
This is the first line.
This is the second line.
This is the indented third line.
This is the fourth line.
</description>

...result in the following:

This is the first line.
This is the second line.
This is the indented third line.
This is the fourth line.

A.2.2.3 Markup

The pre-processed description can contain the following markup, which is inspired by, but is not identical to,
MediaWiki markup. All DM Instance processing tools SHOULD support this markup to the best of their ability.

Table 2 — XML Description Markup

** level two

* level one again

** level two again

*** level three

*: level one continued
outside of list

Name Markup Example Description

Italics 0dtalictext 60 Two apostrophes on each side of some text will result in the contained
text being emphasized in italics.

Bold 60 ®boltde x 680 Three apostrophes on each side of some text will result in the contained
text being emphasized in bold.

Bold italics O®O6Obtiexdod Five apostrophes on each side of some text will result in the contained
text being emphasized in bold italics.

Paragraph This paragraph just A line break is interpreted as a paragraph break.

ended.
Bulleted lists * level one A line starting with one or more asterisks (*) denotes a bulleted list entry,

whose indent depth is proportional to the number of asterisks specified.

If the asterisks are followed by a colon (:), the previous item at that level is
continued, as shown.

An empty line, or a line that starts with a character other than an asterisk,
indicates the end of the list.

Numbered lists

level one

level two

level one again

level two again

level three

#: level one continued
outside of list

A line starting with one or more number signs (#) denotes a numbered list
entry.

All other conventions defined for bulleted lists apply here (using # rather
than *), except that numbered list entries are prefixed with an integer
decoration rather than a bullet.

Indented lists

level one
level two
level one again
level two again
level three
outside of list

A line starting with one or more colons (:) denotes an indented list entry.

All other conventions defined for bulleted lists apply here (using : rather
than *), except that indented list entries have no prefix decoration, and
item continuation is not needed.

February 2010

© The Broadband Forum. All rights reserved.

29 of 87

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 4

Name Markup Example Description
Verbatim code example: A block of lines each of which starts with a space is to be formatted
if (something) { exactly as typed, preferably in a fixed width font.
/* do something */ This allows code fragments, simple tables etc. to be included in

} e}fed{ her +) descriptions.

} © other Note that the pre-processing rules of A.2.2.2 imply that it is not possible to
process an entire description as verbatim text (because all the leading
whitespace would be removed). This is not expected to be a problem in
practice.

Hyperlinks http://www.broadband- URL links are specified as plain old text (no special markup).
forum.org

Templates {{bibref|1l|section 2}} Text enclosed in double curly braces ({}) is a template reference, which is
{{section|table}} replaced by template-dependent text.
{{param|Enable}} A.2.2.4 specifies the standard templates.
{{enum|Error}}

A.2.2.4 Templates

A template invocation is encoded as two curly braces on either side of the template name and arguments.
Arguments can follow the template name, separated by vertical pipe (|) characters. All whitespace is significant.

For example:

|{{someTemplate|argl|argZ|é|argN}} |

In some cases, one template can impact the behavior of another template, e.g. the definitions of both the { {enum} }
and the { {hidden}} templates state that the template expansion can be automatically placed after the rest of the
description, which raises the question of which template expansion would come first. This ambiguity is resolved by
stating that processing tools SHOULD generate such automatic text in the same order that the templates are defined
below. In the above example, { {enum}} is defined before { {hidden} }, so an automatically-generated list of
enumeration values would be placed before an automatically-generated explanation that the parameter value is

hidden.

The following standard templates are defined. Any vendor-specific template names MUST obey the rules of section

3.3.

Table 3 — XML Description Templates

Name Markup Definition Description
Bibliographic {{bibref|id}} A bibliographic reference.
reference {{bibref|id|section}}

The id argument MUST match the id attribute of one of the
current fiinipeo rst e(do-tdveldiniography t o p
el ement’ s refekhkZXdhce el ement s
The OPTIONAL section argument specifies the section number,
including any leading“ secti on”, “annex”
Typically, processing tools will (a) validate the id, and (b)
replace the template referenc
section”.

Markup examples:

{{bibref|1}}

{{bibref|l|section 3}}

q

February 2010

© The Broadband Forum. All rights reserved.

30 of 87

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 4

Name

Markup Definition

Description

Section separator

{{section|category}}
{{section}}

The beginning or end of a section or category. This is a way of
splitting the description into sections.

If the category argument is present, this marks the end of the
previous section (if any), and the beginning of a section of the
specified category. The “tab
categories are reserved for the obvious purposes.

If the category argument is absent, this marks the end of the
previous section (if any).

Typically, processing tools will (a) validate the category, and (b)
replace the template reference with a section marker.

Markup examples:

{{section|table}}

{{section|row}}

{{section|examples}}

Parameter and
object reference

{{param|ref}}
{{param|ref|scope}}
{{param}}

{{object|ref}}
{{object|ref|scope}}
{{cbject}}

A reference to the specified parameter or object.

The OPTIONAL ref and scope arguments reference a
parameter or object. Scope defaults to normal. Parameter and
object names SHOULD adhere to the rules of A.2.3.4.
Typically, processing tools will (a) validate the reference, and
(b) replace the template reference with the ref argument or, if it
is omitted, the current parameter or object name, possibly
rendered in a distinctive font. Processing tools can use the
scope to convert a relative path into an absolute path in order,
for example, to generate a hyperlink.

Markup examples:

{{param|Enable}}
{{object|Stats.}}

List description

{{list}}
{{listlarg}}

{{nolist}}

A description of the current

This template SHOULD only be used within the description of a
list-valued parameter (A.2.7.1).

This is a hint to processing tools to replace the template
reference with a description
This overrides processing too
(unless suppressed by { {nolist}}) of describing the list
attributes before the rest of the description.

The OPTIONAL argument specifies a fragment of text that
describes the list and SHOULD be incorporated into the
template expansion.

Typically processing tools will generate text of the form

“ C o miweparated list of <dataType> . ” Or -sép&ateu n|
l'ist of <dataType>, <arg>.".

Reference
description

{{reference}}
{{referencelarg}}

{{noreference}}

A description of the object or parameter that is referenced by
the current parameter.

This template SHOULD only be used within the description of a
reference parameter (A.2.3.7).

This is a hint to processing tools to replace the template
reference with a descriptei on
attributes. This overrides p
behavior (unless suppressed by { {noreference}}) of
describing the reference attributes after the list attributes (for a
list-valued parameter) or before the rest of the description
(otherwise).

The OPTIONAL argument is relevant only for a pathRef; it
specifies a fragment of text that describes the referenced item
and SHOULD be incorporated into the template expansion.
Typically processing tools wi
vaueMUSThe t he fulll path name o
generated text can be expected to be sensitive to whether or
not the parameter is list-valued.

February 2010

© The Broadband Forum. All rights reserved. 31 0f 87

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 4

{{enum|value|param|scope}}
{{enum}}

{{noenum} }

Name Markup Definition Description
Enumeration {{enum|value}} A reference to the specified enumeration value.
reference {{enum|value|param}}

The OPTIONAL value argument specifies one of the
enumeration values for the referenced parameter. If present, it
MUST be a valid enumeration value for that parameter.

The OPTIONAL param and scope arguments identify the
referenced parameter. Scope defaults to normal. If present,
param SHOULD adhere to the rules of A.2.3.4. If omitted, the
current parameter is assumed.

If the arguments are omitted, this is a hint to processing tools to
replace the template referenc
enumer ations, possibly preced
of : " . This overrides procesrs
(unless suppressed by { {noenum}}) of | i sting
enumerations after the rest of the description.

Otherwise, typically processing tools will (a) validate that the
enumeration value is valid, and (b) replace the template
reference with the value and/or param arguments, appropriately
formatted and with the value possibly rendered in a distinctive
font. Processing tools can use the scope to convert a relative
path into an absolute path in order, for example, to generate a
hyperlink.

Markup examples:

{{enum|None}}

{{enum|None |OtherParam} }

Pattern reference

{{pattern|value}}
{{pattern|value|param}}
{{pattern|value|param|scope}}
{{pattern}}

{{nopattern}}

A reference to the specified pattern value.

The OPTIONAL value argument specifies one of the pattern
values for the referenced parameter. If present, it MUST be a
valid pattern value for that parameter.

The OPTIONAL param and scope arguments identify the
referenced parameter. Scope defaults to normal. If present,
param SHOULD adhere to the rules of A.2.3.4. If omitted, the
current parameter is assumed.

If the arguments are omitted, this is a hint to processing tools to

replace the template referencewi t h a 1 i st of
patterns, possibly preceded b
patterns: ”. This overrides p

behavior (unless suppressed by { {nopattern}}) of listing the
parameter’s patternsrigtdént er t h
Otherwise, typically processing tools will (a) validate that the
pattern value is valid, and (b) replace the template reference
with the value and/or param arguments, appropriately formatted
and with the value possibly rendered in a distinctive font.
Processing tools can use the scope to convert a relative path
into an absolute path in order, for example, to generate a
hyperlink.

Markup examples:

{{pattern|None}}
{{pattern|None|OtherParam}}

February 2010

© The Broadband Forum. All rights reserved. 32 of 87

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 4

Name

Markup Definition

Description

Hidden value

{{hidden}}
{{hidden|value}}

{{nohidden}}

Text explaining that the value of the current parameter is
hidden and cannot be read.

This template SHOULD only be used within the description of a
hidden parameter (A.2.7.1).

This is a hint to processing tools to replace the template
reference with text explaining that the value of the current
parameter is hidden and cannot be read. This overrides
processing tool s’ expected de
by { {nohidden}}) of placing this text after the rest of the
description.

The OPTIONAL argument indicates the value that is returned
when the current parameter is read. If omitted this defaults to
the expansion of the { {null}} template.

Typically, processingto ol s wi | | gener arhen

read, this parameter returns <arg>, regardless of the actual
value.” .

Factory default
value

{{factory}}

{{nofactory}}

Text listing the factory default for the current parameter.

This template SHOULD only be used within the description of a
parameter that has a factory default value.

This is a hint to processing tools to replace the template
reference with text listing the factory default value. This
overrides processing tools’' e
suppressed by {{nofactory}}) of placing this text after the rest of
the description.

Typically, processing tools w
factory default value MUST be

Unique keys
description

{{keys}}

{{nokeys}}

A descriptionofthecur r ent obj ect’s wuniq
This template SHOULD only be used within the description of a
multi-instance (table) object that defines one or more unique
keys (A.2.8.1).

This is a hint to processing tools to replace the template
reference with a description
overrides processing tools’' e
suppressed by { {nokeys}}) of describing the unique keys

after the description.

Units reference {{units}} The parameter’s units string.
Typically, processing tools will (a) check that the parameter has
a units string, and (b) substitute the value of its units string.

Boolean values {{false}} Boolean values.

{{true}} Typically, processing tools will substitute the value False or
True, possibly rendered in a distinctive font.

Miscellaneous {{empty}} Typically, processing tools will render such values in a
distinctive font, possibly using standard wording, such as
<Empty> or “an empty string”.

{{null}} Expands to the appropriate null value for the current

parameter’ s deghpaylt,) {¥elselgorg..

A.2.25 HTML Example

This includes examples of most of the markup and templates.

February 2010

© The Broadband Forum. All rights reserved. 33 0f 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<model name="Goo:1.1" base="Goo:1.0">
<object name="GooTop." access="readOnly" minEntries="1" maxEntries="1">
<parameter name="ExampleParam" access="readOnly">

<description>
{{section|Introduction}}This is an ''example'' parameter that illustrates many of the
'''formatting''' templates. For '''''example''''', this references {{bibref|TR-
106al|section 3.2}}.
{{section|Usage}}This parameter is called {{object}}{{param}}. One can also reference other

parameters in the same object, such as {{param|OtherParameter}}, and indicate
that the parameter value is measured in {{units}}.
One can also include bulleted lists:
* level one
** level two
* level one again
** level two again
*** level three
*: level one continued
and numbered lists:
level one
level two
level one again
level two again
level three
#: level one continued
and indented lists
: level one
level two
: level one again
level two again
level three
and hyperlinks such as http://www.google.com
and code examples:
if (something) {
/* do something */
} else {
/* do other */
}
If the parameter was Boolean, one could refer to its values {{false}} and {{true}}.
One can refer to its enumerations individually, e.g. {{enum|Disabled}}, or to other parameters'
enumerations, such as {{enum|Value|OtherParam}}, or can list them all. {{enum}}
Finally, if there were any patterns they could be listed too. {{pattern}}
</description>
<syntax>
<string>
<enumeration value="A"/>
<enumeration value="B"/>
<units value="packets"/>
</string>
</syntax>
</parameter>

The resulting HTML would look something like this:

February 2010 © The Broadband Forum. All rights reserved. 34 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

This is an example parameter that illustrates many of the formatting templates. For example, this references [TR-106a1]
section 3.2.

This parameter is called FParentObject. ExampleFaram. One can also reference other parameters in the same object, such
as OtherParametfer, and indicate that the parameter value is measured in packets.

One can also include bulleted lists:

* |evel one
2 level two
* |evel one again
2 level two again
B |evel three

level one continued
and numbered lists:

1. level one
1. level two
2. level one again
1. level two again
1. level three

level one continued
and indented lists

level one
level twa
level one again
level two again
level three

and hyperlinks such as http://www google com

and code examples:

if (=something)

/* do something =/
} else {

/* do other =/
}

If the parameter was Boolean, one could refer to its values false and true.

One can refer to its enumerations individually, e.g. A, or to other parameters’ enumerations, such as Value, or can list
them all. Possible values:

* [Disabled
* Fnabled
* Error (OPTIOMAL)

Finally, if there were any patterns they could be listed too.

A.2.3 Data Types

TR-069 [2] data models support only the Table 1 primitive data types “on the wire”. However, the DM Schema
allows data types to be derived from the primitive types or from other named data types. Such derived types can be
named or anonymous.

A.2.3.1 Named Data Types

Named data types are defined using the top-level dataType element. A DM Instance can contain zero or more top-
level dataType elements.

February 2010 © The Broadband Forum. All rights reserved. 35 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

When defining a new named data type, the following attributes and elements are relevant (normative requirements
are specified in the schema).

Table 4 — XML Named Data Types

Name Description

name The data type name.

base The base type name, i.e. name of the data type from which this data type is derived. This is used only where
the base type is itself a named data type, not a primitive type.

status The data type’'s {current, depr e deatltsiocurremtbancsb is motlikely
to be specified for a new data type.

description The data typeR2®2).description (

size Data type facets (A.2.3.3). These are permitted only when the base type is a named data type, i.e. when the

pathRef base attribute is specified.

instanceRef

range

enumeration

enumerationRef

pattern

units

base64 Primitive data type definition. These are permitted only when the base type is primitive. There is an element

boolean for each primitive data type, and each element supports only the facets (A.2.3.3) that are appropriate to that

dateTime data type.

hexBinary

int

long

string

unsignedint

unsignedLong

For example:

<dataType name="String255">
<string>

<size maxLength="255"/>
</string>
</dataType>

<dataType name="Stringl27" base="String255">
<size maxLength="127"/>
</dataType>

A.2.3.2 Anonymous Data Types

Anonymous data types are defined within parameter syntax elements (A.2.7.1), and can apply only to the parameters
within which they are defined. For example:

<parameter name="Examplel" access="readOnly">
<syntax>
<string>
<size maxLength="127"/>
</string>
</syntax>
</parameter>

<parameter name="Example2" access="readOnly">
<syntax>
<dataType base="String255">
<size maxLength="127"/>
</dataType>
</syntax>
</parameter>

If an anonymous data type is modified in a later version of a data model, the modified anonymous data type is

February 2010 © The Broadband Forum. All rights reserved. 36 of 87

A.2.3.3

A.2.3.4

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

regarded as being derived from the original anonymous data type. Therefore the base type restriction rules of
A.2.3.8 MUST be obeyed.

Data Type Facets
A facet specifies some aspect of a data type, e.g. its size, range or units.

Note that XML Schema [11] also associates facets with data types. The XML Schema and DM Schema concepts
are the same, but the set of facets is not identical.

The DM Schema defines the following facets (normative requirements are specified in the schema):
Table 5 — XML Data Type Facets

Name Description

size Size ranges for the data type (applies to string, base64, hexBinary and their derived types).

Note that the size facet always refers to the actual value, not to the base64- or hexBinary-encoded value.
Prior to the definition of the DM Schema, the maximum sizes of base64 parameters referred to the base64-
encoded values. Processing tools that generate reports from DM Instances SHOULD include explicit
clarification of whether the size ranges refer to the actual or encoded values.

pathRef Details of how to reference parameters and objects via their path names (applies to string and its derived
types: A.2.3.7).

instanceRef Details of how to reference object instances (table rows) via their instance numbers (applies to int, unsignedint
and their derived types; A.2.3.7).

range Value ranges for the data type (applies to numeric data types and their derived types).

enumeration Enumerations for the data type (applies to string and its derived types).

enumerationRef Enumerations for the data type, obtained at run-time from the value of a specified parameter (applies to string
and its derived types; A.2.3.7).

pattern Patterns for the data type (applies to string and its derived types).

units Units for the data type (applies to numeric data types and their derived types).

It is important to note that the enumeration facet does not necessarily define all the valid values for a data type. This
is for the following reasons:

e Asspecified in section 3.3, vendors are allowed to add additional enumeration values.

e A future version of a data model may need to add additional enumerations values.

Reference Path Names

Some description templates (A.2.2.4), and all reference facets (A.2.3.7), need to specify parameter or object names.
It is always possible to specify a full path name, but it is frequently necessary or convenient to specify a relative path
name. For example, it might be necessary to reference another parameter in the current object. Any instance
numbers in the parameter’s full path name cannot be known at data model definition time, so this can only be done
using a relative path name.

The following rules apply to all path names that are used in data model definitions for referencing parameters or
objects:

e Path names MAY contain “{i}” placeholders, which MUST be interpreted as wild cards matching all instance
numbers, e.g. “InternetGatewayDevice. WANDevice.{i}.” references all WANDevice instances.

e Path names MUST NOT contain instance numbers.

A path name is always associated with a path name scope, which defines the point in the naming hierarchy relative
to which the path name applies.

February 2010 © The Broadband Forum. All rights reserved. 37 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Table 6 — Path Name Scope Definition

Name Description

normal This is a hybrid scope which usually gives the desired behavior:

e | f the path begins with a “Device” oatietolthatopeoftmee t G
naming hierarchy.

e If the path begins with a dot, it is relative to the Root or Service Object (c.f. scope=model).
e Otherwise, the path is relative to the current object (c.f. scope=object).

model The path is relative to the Root or Service Object.

object The path is relative to the current object.

Formally, if the path name scope is normal:
e If the path is empty, it MUST be regarded as referring to the top of the naming hierarchy.

e Otherwise, if the path begins with a “Device” or “InternetGatewayDevice” component, it MUST be regarded as
a full path name (these are the only two possible Root Device names).

e Otherwise, if the path begins with a dot (“.”), it MUST be regarded as a path relative to the Root or Service
Object. For example, in the Device Root Object “.Devicelnfo.” means “Device.Devicelnfo.”, and in the
Device.Services.ABCService.1 Service Object it means “Device.Services.ABCService.1.Devicelnfo.”.

e Otherwise, it MUST be regarded as a path relative to the current object. Any leading hash characters (‘“#)
cause it to be relative to the parent of the current object (or the parent’s parent, and so on) as described below.
For example, if the current object is “Device.LAN.”, “IPAddress” means “Device.LAN.IPAddress”, “Stats.”
means “Device. LAN.Stats.” and “#.Devicelnfo.” means “Device.Devicelnfo” (see below for more “#”
examples).

If the path name scope is model:
o If the path is empty, it MUST be regarded as referring to the Root or Service Object.

e Otherwise, it MUST be regarded as a path relative to the Root or Service Object. Any leading dot MUST be
ignored. Leading hash characters are not permitted.

If the path name scope is object:
e If the path is empty, it MUST be regarded as referring to the current object.

e Otherwise, it MUST be regarded as a path relative to the current object. Any leading dot MUST be ignored.
Leading hash characters are not permitted.

As mentioned above, if the path name scope is normal, a leading hash character causes the path to be relative to the
parent of the current object. Additional hash characters reference the parent’s parent, and so on, but they MUST
NOT be used to reference beyond the Root or Service Object. Also, for object instances, “#.” always means the
multi-instance object’s (table’s) parent rather than the multi-instance object (table).

In addition, within a component definition, items that are defined outside the component MUST NOT be referenced
via relative paths. This is because components can be included anywhere within the data model tree.

For example, if the current object is “Device. LAN.DHCPOption.{i}.”:

e “#.” means “Device. LAN.” (the table’s parent, not the table).

o “#.DHCPOption.” means “Device. LAN.DHCPOption.” (the table).

e ‘“#.Stats.” means “Device. LAN.Stats.”.

e ‘“#.Stats.TotalBytesSent” means “Device. LAN.Stats.TotalBytesSent”.

The following examples would be invalid if LAN was defined within a component:

February 2010 © The Broadband Forum. All rights reserved. 38 of 87

A.2.3.5

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

e “##.” means “Device.”.

o “##.Devicelnfo.” means “Device.Devicelnfo.”.

o “##.Devicelnfo.Manufacturer” means “Device.Devicelnfo.Manufacturer”.
The final example can never be valid:

o “H###.” is not permitted (references beyond the Root Object).

Note that the term “Root or Service Object”, which is used several times above, means “if within a Service Object
instance, the Service Object instance; otherwise, the Root Object™.

For example, the pathRef and instanceRef facets (A.2.3.7) have a targetParent attribute which specifies the possible
parent(s) of the referenced parameter or object, and a targetParentScope attribute (defaulted to normal) which
specifies targetParent’s scope. If the current object is within a Service Object instance, setting targetParentScope to
model forces the referenced parameter or object to be in the same Service Object instance. Similarly, setting
targetParentScope to object forces the referenced parameter or object to be in the same object or in a sub-object.

String parameters whose values are path names are subject to the rules of section 3.2, so object names do not include
a trailing dot. The parameter value (or each list item if the parameter is list-valued) MUST always be a full path
name, with the single exception that a path that begins with a dot is relative to the Root or Service Object. For
example, in the Device Root Object, a parameter value of “.Devicelnfo”always means “Device.Devicelnfo”.

In order to be able to use reference parameters as unique keys (A.2.8.1), path names in parameter values MUST
conceptually be converted to full path names before being compared. For example, in the Device Root Object,

“ Devicelnfo.” and “Device.Devicelnfo.” would compare as equal. If a reference parameter is list-valued, i.e. it is a
list of path names or instance numbers, the parameter value MUST conceptually be regarded as a set when being
compared, i.e. the comparison has to ignore the item order and any repeated items. For example, “1,2,1” and “2,1”
would compare as equal because both reference instances 1 and 2.

Null References

A null reference indicates that a reference parameter is not currently referencing anything. The value that indicates a
null reference depends on the reference parameter’s base data type:

e string: a null reference MUST be indicated by an empty string.
e unsignedlInt: a null reference MUST be indicated by the value 0.

e int: a null reference MUST be indicated by the value -1.

February 2010 © The Broadband Forum. All rights reserved. 39 of 87

A.2.3.6

A.2.3.7

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Reference Types
A reference to another parameter or object can be weak or strong:

e weak: it doesn’t necessarily reference an existing parameter or object. For example, if the referenced parameter
or object is deleted, the value of the reference parameter might not get updated.

e strong: it always either references a valid parameter or object, or else is a null reference (A.2.3.5). If the
referenced parameter or object is deleted, the value of the reference parameter is always set to a null reference.

The following requirements relate to reference types and the associated CPE behavior.
e All read-only reference parameters MUST be declared as strong references.

e A CPE MUST reject an attempt to set a strong reference parameter if the new value does not reference an
existing parameter or object.

e A CPE MUST NOT reject an attempt to set a weak reference parameter because the new value does not
reference an existing parameter or object.

e A CPE MUST change the value of a non-list-valued strong reference parameter to a null reference when a
referenced parameter or object is deleted.

e A CPE MUST remove the corresponding list item from a list-valued strong reference parameter when a
referenced parameter or object is deleted.

e A CPE MUST NOT change the value of a weak reference parameter when a referenced parameter or object is
deleted.

Reference Facets
A reference facet specifies how a parameter can reference another parameter or object. There are three sorts of
reference:

o Path reference: references another parameter or object via its path name. Details are specified via the pathRef
facet, which applies to string and its derived types.

e Instance reference: references an object instance (table row) via its instance number. Details are specified via
the instanceRef facet, which applies to int, unsignedint and their derived types.

e Enumeration reference: references a list-valued parameter via its path name. The current value of the
referenced parameter indicates the valid enumerations for this parameter. Details are specified via the
enumerationRef facet, which applies to string and its derived types.

When defining a path reference, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 7 — PathRef Facet Definition

Name Description

targetParent An XML list of path names that can restrict the set of parameters and objects that can be referenced. If the
list is empty (the default), then anything can be referenced. Otherwise, only the immediate children of one
of the specified objects can be referenced,

A “{i}” placeholder in a path name acWANDevise{i{hWAN} |
ConnectionDevice {}WANPPPConnecti on. " . Path names cannot

targetParentScope Specifies the point in the naming hierarchy relative to which targetParent applies (A.2.3.4): normal
(default), model or object.

targetType Specifies what types of item can be referenced:

e any: any parameter or object can be referenced (default)

e parameter: any parameter can be referenced

e object: any object can be referenced

e single: any single-instance object can be referenced

e table: any multi-instance object (table) can be referenced

e row: any multi-instance object (table) instance (row) can be referenced

February 2010 © The Broadband Forum. All rights reserved. 40 of 87

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 4

Name Description
targetDataType Specifies the valid data types for the referenced parameter. Is relevant only when targetType is any or
parameter.
Possible values are as follows:
e any: a parameter of any data type can be referenced (default)
e base64: only a base64 parameter can be referenced
e boolean: only a boolean parameter can be referenced
e dateTime: only a dateTime parameter can be referenced
e hexBinary: only a hexBinary parameter can be referenced
e integer: only an integer (int, long, unsignedint or unsignedLong) parameter can be referenced
e int: only an int parameter can be referenced
e long: only a long (or int) parameter can be referenced
e string: only a string parameter can be referenced
e unsignedInt: only an unsignedint parameter can be referenced
e unsignedLong: only an unsignedLong (or unsignedint) parameter can be referenced
e <named data type>: only a parameter of the named data type can be referenced
In addition, a parameter whose data type is derived from the specified data type can be referenced. The
built-in type hierarchy (a simplified version of the XML Schema type hierarchy) is as follows:
any
base64
boolean
dateTime
hexBinary
integer
long
int
unsignedLong
unsignedInt
string
Note that any and integerar e not valid parameter data types.
reference any data type” and “can reference any
refType Specifies the reference type (0): weak or strong.

When defining an instance reference, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 8 — InstanceRef Facet Definition

Name Description

targetParent Specifies the path name of the multi-instance object (table) of which an instance (row) is being referenced.
“{i}"” placeholders and explicit instance numbers
can be used to specify path names relative to the Root or Service Object or the current object.

targetParentScope Specifies the point in the naming hierarchy relative to which targetParent applies (A.2.3.4): normal
(default), model or object.

refType Specifies the reference type (0): weak or strong.

When defining an enumeration reference, the following attributes and elements are relevant (normative requirements
are specified in the schema).

Table 9 — EnumerationRef Facet Definition

Name Description
targetParam Specifies the path name of the list-valued parameter whose current value indicates the valid enumerations
for this parameter.
targetParamScope Specifies the point in the naming hierarchy relative to which targetParam applies (A.2.3.4): normal
(default), model or object.
February 2010 © The Broadband Forum. All rights reserved. 41 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Name Description

nullValue Specifies the parameter value that indicates that none of the values of the referenced parameter currently
apply (if not specified, no such value is designated).

Note that if this parameter is list-valued then nullValue is not relevant, because this condition will be
indicated by an empty list.

The following examples illustrate the various possible types of reference.

<object name="Periodi ¢ St ati stics. SampleSet. {i}.Parameter. {i}." é>
e
<parameter name="Reference" access="readWrite">
<description>Reference to the parameter that is associated with this object instance.
This MUST be the parameter's full path name.</description>
<syntax>
<string>
<size maxLength="256"/>
<pathRef targetType="parameter" refType="weak"/>

</string>
<default type="object" value=""/>
</syntax>
</parameter>
<object name="StorageService.{i}.StorageArray.{i}." é>

e
<parameter name="PhysicalMediumReference" access="readWrite">
<description>A comma-separated list of Physical Medium references. Each Physical Medium
referenced by this parameter MUST exist within the same StorageService instance.
A Physical Medium MUST only be referenced by one Storage Array instance. Each
reference can be either in the form of ".PhysicalMedium.{i}" or a fully
qualified object nameé</description>
<syntax>
<list>
<size maxLength="1024"/>
</list>
<string>
<pathRef targetParent=".PhysicalMedium." targetParentScope="model" targetType="row"
refType="strong"/>
</string>
</syntax>
</parameter>

<object name="InternetGatewayDevice.QueueManagement.Classification.{i}." access="readWrite"
minEntries="0" maxEntries="unbounded"
entriesParameter="ClassificationNumberOfEntries">
<description>Classification table.</description>
<parameter name="ClassQueue" access="readWrite'">
<description>Classification result. I nstance number é</descriptio
<syntax>
<int>
<instanceRef targetParent=".QueueManagement.Queue." refType="strong"/>
</int>
</syntax>
</parameter>

February 2010 © The Broadband Forum. All rights reserved. 42 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<object name="STBService. {i}.Components. FrontEnd. {i}.IP.Inbound. {i}
e
<parameter name="StreamingControlProtocol" access="readOnly">
<description>Network protocol currently used for controlling streaming of the source content, or
an empty string if the content is not being streamed or is being streamed but is
not being controlled.
If non-empty, the string MUST be one of the .Capabilities.FrontEnd.IP.StreamingControlProtocols
values.</description>
<syntax>
<string>
<enumerationRef targetParam=".Capabilities.FrontEnd.IP.StreamingControlProtocols"
nullvalue=""/>
</string>
</syntax>
</parameter>

<parameter name="StreamingTransportProtocol" access="readOnly">
<description>Network protocol currently used for streaming the source content, or an empty
string if the content is not being streamed.
If non-empty, the string MUST be one of the .Capabilities.FrontEnd.IP.StreamingTransportProtocols
values.</description>
<syntax>
<string>
<enumerationRef targetParam=".Capabilities.FrontEnd.IP.StreamingTransportProtocols"
nullvalue=""/>
<string/>
</syntax>
</parameter>

<object name="Internet Gat ewayDevice. LANDevice.{i}.WLANConfiguration
e
<parameter name="ConfigMethodsEnabled" access="readWrite">
<description>Comma-separated list of the WPS configuration methods enabled on the device. Each
entry in the list MUST be a member of the list reported by the
ConfigMet hodsSupported parameteré</description>
<syntax>
<list/>
<string>
<enumerationRef targetParam="ConfigMethodsSupported"/>
</string>
</syntax>
</parameter>

A.2.3.8 Base Type Restriction

A new data type MUST always be a restriction of its base type, meaning that a valid value of the new data type will
always be a valid value for its base type. This is the case for the examples of A.2.3.1, which involve three different
data types:

e string of unlimited length
e string of maximum length 255
e string of maximum length 127

Clearly a string of length 100 is valid for all three data types, but a string of length 200 is only valid for the first two
data types.

The examples of A.2.3.1 considered only the size facet, but in general all facets that are applicable to the data type
have to be considered. The base type restriction requirements for each facet are as follows:

Table 10 — XML Facet Inheritance Rules

Facet Requirements

size The derived data type can define sizes in any way, provided that the new sizes do not permit any values that
are not valid for the base type.

February 2010 © The Broadband Forum. All rights reserved. 43 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Facet Requirements
pathRef The derived data type can modify the data type in the following ways:

e By “promoting” status to a “higher” valwue, wher ¢
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be changed
to deleted, butde | et ed can’'t be changed back to obsolete
obsoletion and deletion rules of section 2.4 MUST be obeyed.

e By changing targetParent to narrow the set of possible parent objects.

e By changing targetType to narrow the set of possible target types.

e By changing targetDataType to narrow the set of possible target data types.

instanceRef The derived data type can modify the data type in the following ways:
e By “promoting” status to a “higher” value, as d
e By changing targetParent to narrow the set of possible parent objects.

range The derived data type can define ranges in any way, provided that the new ranges do not permit any values
that are not valid for the base type.

enumeration The derived data type can modify existing enumeration values in the following ways:

e By “promoting” access from readOnly to readWrit ¢

e By “promoting” status tbedfoapathRef. gher” value, as d

e By “promoting” optional from False to True.

e By adding a code, if none was previously specified.

e By using the action attribute to extend or replace the description (see below).

The derived data type can add new enumeration values.

enumerationRef The derived data type can modify the data type in the following ways:
e By “promoting” status to a “higher” value, as d
pattern The derived data type can modify existing pattern values by changing access, status, optional and description
exactly as for enumerations.

The derived data type can add new patterns and/or replace existing patterns with new patterns, provided that

the new patterns do not permit any values that are not valid for the base type.

For example a single patter n “ [AB] " could be replaced with “A” ¢

units The derived data type can add wunits if the base t

Most of the above requirements are non-normative, because it has to be possible to correct errors. For example, if
the base type supports a range of [-1:4095] but the values 0 and 4095 were included in error, it would be permissible
for a derived type to support ranges of [-1:-1] and [1:4094]. Processing tools SHOULD be able to detect and warn

about such cases.

When defining a new data type, if a facet is omitted, the new data type will inherit that facet from its base type. If a
facet is present, it MUST be fully specified (except that special rules apply to descriptions; see below). For
example, this means that a derived type that adds additional enumeration values has also to re-declare the
enumeration values of the base type.

For example, in the following, the derived type inherits the units facet from its parent but it does not inherit the
range facet, so the PacketCounter range is [10:] and the PacketCounter2 range is [15:20].

<dataType name="PacketCounter">
<unsignedLong>
<range minInclusive="10"/>
<units value="packets"/>
</unsignedLong>
</dataType>

<dataType name="PacketCounter2" base="PacketCounter">
<range minInclusive="15" maxInclusive="20"/>
</dataType>

Similarly, in the following, the enumeration values for ABCD are not A, B, C and D, but are just C and D. Thisis
an error (because the derived type cannot remove enumeration values), and processing tools SHOULD detect and
warn about such cases.

February 2010

© The Broadband Forum. All rights reserved. 44 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<dataType name="AB">
<string>
<enumeration value="A"/>
<enumeration value="B"/>
</string>
</dataType>

<dataType name="ABCD" base="AB">
<string>
<enumeration value="C"/>
<enumeration value="D"/>
</string>
</dataType>

A derived data type and any of its facets that support descriptions will inherit those descriptions from the base type.
Facet descriptions are inherited regardless of whether the facet is present in the derived type. For any descriptions
that are explicitly specified in the derived type, the action attribute controls whether they will be extended or

replaced.

For example, in the following, the description of Y (which is not changed) does not have to be repeated.

<dataType name="XY">
<description>This is XY.</description>
<string>
<enumeration value="X">
<description>This is X.</description>
</enumeration>
<enumeration value="Y">
<description>This is Y.</description>
</enumeration>
</string>
</dataType>

<dataType name="XY2" base="XY">
<description action="replace">This is all about XY.</description>
<enumeration value="X">
<description action="append">This is more about X.</description>
</enumeration>
<enumeration value="Y"/>
</dataType>

A.2.4 Bibliography

The bibliography is defined using the top-level bibliography element, which can contain zero or more
(bibliographic) reference elements.

When defining a new bibliographic reference, the following attributes and elements are relevant (normative
requirements are specified in the schema).

Table 11 — XML Bibliographic References

Name Description

id The bibliographic reference ID.

name The name by which the referenced document is usually known.
title The document title.

organization

The organization that published the referenced document, e.g. BBF, IEEE, IETF.

category The document category, e.g. TR (BBF), RFC (IETF).
date The publication date.
hyperlink Hyperlink(s) to the document.

The bibliographic reference ID is intended to uniquely identify this reference across all instance documents.
Therefore, for instance documents that are published by the BBF, IDs MUST obey the following rules:

February 2010

© The Broadband Forum. All rights reserved. 45 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

e For a BBF Technical Report, it MUST be of the form “TR-nnnixaycz”, where TR is the literal “TR”, nnn is the
Technical Report number (including leading zeros), i, a and c are literal letters, and x, y, and z are the issue,
amendment and corrigendum numbers respectively. The issue number (ix) is omitted if it is issue 1 and the
amendment number (ay) is omitted if it is amendment 0. For example, “TR-106a2” refers to TR-106 (Issue 1)
Amendment 2. If the corrigendum number (cz) is omitted, the most recent corrigendum is assumed.

e For an IETF RFC, it MUST be of the form “RFCnnn”, where RFC is the literal “RFC” and nnn is the RFC
number (no leading zeros).

e For an IEEE specification, it SHOULD be of the form “nnn.ml-dddd”, where nnn.m is the IEEE group, 1 is the
spec letter(s), and dddd is the publication year. For example, “802.1D-2004".

e Foran ETSI specification (which includes DVB specifications), it SHOULD be of the form “TTnnnnnnva.b.c”
where TT is the specification type, usually “TS” (Technical Specification), nnnnnn is the specification number,
and a.b.c is the version number.

e For specifications issued by other standards organizations, or by vendors, it SHOULD be of a standard form if
one is defined.

Processing tools SHOULD be lenient when comparing bibliographic reference IDs. Specifically, they SHOULD
ignore all whitespace, punctuation, leading zeros in numbers, and upper / lower case. So, for example, “rfc 1234”
and “RFC1234” would be regarded as the same 1D, as would “TR-069" and “TR69”.

Processing tools SHOULD detect and report inconsistent bibliographic references, e.g. a reference with the same 1D
(i.e. an 1D that compares as equal) as one that was encountered in a different file, but with a different name or
hyperlink.

Formally, bibliographic reference IDs in instance documents that are published by the BBF and the other
organizations mentioned above are defined as follows:

February 2010 © The Broadband Forum. All rights reserved. 46 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

BBFID

ReferencelD =
| RECID
\
|
|

IEEEID
ETSIID
OtherID
BBFID = "TR-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum

BRFNumber = [DIGIT]{3,} // including leading zeros, e.g. 069

BBFIssue = "i" <number greater than one>
[// empty means Issue 1

BBFAmendment = "a" <number greater than zero>
[// empty means Amendment 0

BBFCorrigendum = "c" <number greater than zero>
| // empty means the most recent Corrigendum

RFCID = "RFC" RFCNumber

RFCNumber = NONZERODIGIT [DIGIT]*
// no leading zeros, e.g. 123

IEEEID = IEEEGroup IEEESpec IEEEDate
| <for other IEEE specifications, of a standard form if one is defined>

IEEEGroup = <group number> "." <group sub-number>
// e.g. 802.1

IEEESpec = <spec letter(s)> // e.g. D

IEEEDate = "-" <publication year>
// e.g. -2004
[// can be empty

ETSIID = ETSISpecType ETSINumber ETSIVersion
<for other ETSI specifications, of a standard form if one is defined>

ETSISpecType = "TR" // Technical Report

| "Ts" // Technical Specification

| "ES" // ETSI Specification

| "EN" // European Standard
ETSINumber = [DIGIT] {6} // e.g. 102034
ETSIVersion = "v" <version number as specified by ETSI>

[// can be empty

OtherURI = <of a standard form if one is defined>

A.2.5 Components

A component is a way of defining a named set of parameters, objects and/or profiles to be used wherever such a
group is needed in more than one place (or just to structure the definitions). A DM Instance can contain zero or
more top-level component elements.

When defining a new component, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 12 — XML Component Definition

Name Description

name The component name.

description The component 'AR2description (
component The other components that are referenced (included) by this component.
parameter The ¢ omp o nlevel parametdr definitions (A.2.7).

February 2010 © The Broadband Forum. All rights reserved. 47 of 87

A.2.6

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 4

Name Description
object The component’'s AB§.ect definitions (
profile The component’'s frofile definitions (

Referencing (including) a component can be thought of as textual substitution. A component has no version number
and isn’t tied to a particular Root or Service Object.

The following is a simple example of component definition and reference.

e

e

e

</model>

<component name="ByteStats">
<parameter name="BytesSent" access="readOnly">
<description>Number of bytes sent.</description>
<syntax><unsignedInt/></syntax>
</parameter>
<parameter name="BytesReceived" access="readOnly">
<description>Number of bytes received.</description>
<syntax><unsignedInt/></syntax>
</parameter>
</component>

<model name="InternetGatewayDevice:1.4">
<object name="InternetGatewayDevice." access="readOnly" minEntries="1" maxEntries="1">

<component ref="ByteStats"/>

</object>

Here the component is referenced from within an object definition. Components can be referenced from within
component, model and object definitions. Parameter, object and profile definitions within components are relative
to the point of inclusion unless overridden using the path attribute.

Root and Service Objects

Root and Service Objects are defined using the model element and an associated top-level object element. A DM
Instance can contain zero or more top-level model elements.

When defining a new model, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 13 — XML Root and Service Objects

Name Description

name The model name, including its major and minor version numbers (3.7).

base The name of the previous version of the model (for use when the model version is greater than 1.0).

isService Whet her it's a Service Object. ttechfor RootdObjécs.u | t s t o F
description The model ' s A@Bscription (

component The components that are referenced (included) by the model.

parameter T h e motdpedvel garameter definitions (A.2.7).

object The mo d edvel and dtherpbject definitions (A.2.8).

profile The model’'s pr@®@file definitions (

Once a given version has been defined, it cannot be modified; instead, a new version of the object has to be defined.
For example, the following example defines v1.0 and v1.1 of a notional Service Object.

February 2010

© The Broadband Forum. All rights reserved. 48 of 87

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 4

<model name="DemoService:1.0" isService="true">
<parameter name="DemoServiceNumberOfEntries" access="readOnly"/>
<object name="DemoService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"
entriesParameter="DemoServiceNumberOfEntries" />
</model>

<model name="DemoService:1.1" base="DemoService:1.0" isService="true">
<object base="DemoService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"/>
</model>

A.2.7 Parameters

A2.7.1

Parameters are defined using the parameter element, which can occur within component, model and object elements.
When defining a new parameter, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 14 — XML Parameter Definition

Name Description

name The parameter name (3.1).

access Whether the parameter can be writable (readWrite) or not (readOnly).

status The parameter’s {current, deprecated, obsol et etkelytad
be specified for a new parameter.

activeNotify The parameter’'s {normal, forceEnabled, ForceDefaul

normal, and so is not often specified for a new parameter.

forcedInform T he par saForeed mform status. This defaults to False, and so is not often specified for a new
parameter.

description The parameter AB2)description (

syntax The paramet AR719. syntax (

Parameter Syntax

Parameter syntax is defined using the syntax element, which can occur only within parameter elements. When
defining a new parameter, the following attributes and elements are relevant (normative requirements are specified
in the schema).

Table 15 — XML Parameter Syntax

Name Description

hidden Whether the value is hidden on readback. This defaults to False, and so is not often specified for a new
parameter.

list If the parameter is list-valued, details of the list value (3.2). This allows specification of the maximum and
minimum number of items in the list, and also supports a size facet for the list (A.2.3.3).
Note that a list-valued parameter is always a string as far as TR-069 [2] is concerned. For a list, the rest of the
syntax specification refers to the individual list items, not to the parameter value.

base64 If the parameter is of a primitive data type, specifies a primitive data type reference, e.g. <int/>.

boolee_an If the parameter data type is derived from a primitive data type, specifies an anonymous primitive data type

dateTime definition (A.2.3.2), e.g. <int><rangema x| ncl usi ve="255"/ ></int >.

hexBinary

int

long

string

unsignedint

unsignedLong

dataType If the parameter is of a named data type, specifies a named data type (A.2.3.1) reference, e.g. <dataType
ref="1PAddress”/ >.
If the parameter data type is derived from a named data type, specifies an anonymous named data type
(A232) definition, e.gqg. <dat aTyprgthhseES"T /PAd/dd &tsa T vy

February 2010

© The Broadband Forum. All rights reserved. 49 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

A.2.8 Objects

Obijects are defined using the object element, which can occur within component and model elements. When
defining a new object, the following attributes and elements are relevant (normative requirements are specified in

the schema).

Table 16 — XML Object Definition

Name Description

name The object name, specified as a partial path (3.1).

access Whether object instances can be Added or Deleted (readWrite) or not (readOnly). Adding or deleting instances
is meaningful only for a multi-instance (table) object.

minEntries The minimum number of instances of this object (always less than or equal to maxEntries).

maxEntries The maxi mum number of instances of this obj e clowthe a
object to be placed into one of three categories:
e minEntries=0, maxEntries=1: single-instance object which might not be allowed to exist, e.g. because

only one of it and another object can exist at the same time.

e minEntries=1, maxEntries=1: single-instance object that is always allowed to exist.
e All other cases: multi-instance (table) object (A.2.8.1).

status The object’'s {current, deprecated, o0bs aldsdisendtikeldtehlee
specified for a new object.

description The object’ a2%escription (

component The components that are referenced (included) by the object.

parameter The object’'s parfipter definitions (

A.2.8.1 Tables

If an object is a table, several other attributes and elements are relevant (normative requirements are specified in the

schema).

Table 17 — XML Table Definition

Name

Description

name

Forat abl e, the |l ast part 34)f the name has to be “{i

entriesParameter

The name of the parameter (in the parent object) that contains the number of entries in the table. Such a
parameter is needed whenever there is a variable number of entries, i.e. whenever maxEntries is
unbounded or is greater than minEntries.

enableParameter

The name of the parameter (in each table entry) that enables and disables that table entry. Such a
parameter is needed whenever access is readWrite (so the ACS might be able to create entries) and at least
one uniqueKey element that defines a functional key is present.

uniqueKey

An element that specifies a unique key by referencing those parameters that constitute the unique key. For
a non-functional key, or if the table has no enableParameter, the uniqueness requirement always applies.
For a functional key, and if the table has an enableParameter, the uniqueness requirement applies only to
enabled table entries.

Each unique key is either functional or non-functional:

e A functional key references at least one parameter that relates to the purpose (or function) of the table, e.g. a
DHCP option tag in a DHCP option table, or an external port number in a port mapping table.

e A non-functional key references only parameters that do not relate to the purpose (or function) of the table, e.g.
an Alias or Name parameter.

A unique key is assumed to be functional unless explicitly marked as non-functional by setting the unique key’s
functional attribute to false.

As can be seen from the description in Table 17, non-functional keys are always required to be unique, regardless of
whether the table has an enableParameter, or is enabled or disabled.

February 2010

© The Broadband Forum. All rights reserved. 50 of 87

A.29

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Profiles

Profiles are defined using the profile element, which can occur within component and model elements. When
defining a new profile, the following attributes and elements are always relevant (normative requirements are
specified in the schema).

Table 18 — XML Profile Definition

Name Description

name The profile name, including its version number (2.3.3).

base The name of the previous version of the profile (for use when the profile version is greater than 1).

extends A list of the names of the profiles that this profile extends.

description The profil eAg22description (

parameter Theprofile’'s parameter requirements, which can incl
and the parameter access requirement.

object The profile’'s object requirements, which canonithec| u
object access requirements, and requirements for t

A.2.10 Modifications

New data types, components, models and profiles can be created based on existing items. This doesn’t modify the

A.2.10.1

existing item.

Parameters, objects and profiles can be modified “in place”, i.e. without creating a new item. This still uses the
parameter, object and profile elements, and is indicated by using the base, rather than the name, attribute. The base
attribute specifies the name of the existing item that is to be modified.

The syntax for modifying an item is the same as for creating an item, but there are rules. These rules are not
specified in the DM Schema.

Parameter Modifications
The following rules govern parameter modifications.

Table 19 — XML Parameter Modification

Name Description

access Can be “promoted” from readOnly to readWrite.

status Can be “promoted” to a “higher” value, where the
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be changed to
del et ed, but del et ed c aetéd.t Whenepromdiireg stgtes,cdhe deprecatiot, o o b's
obsoletion and deletion rules of section 2.4 MUST be obeyed.

activeNotify Can be changed from forceEnabled to forceDefaultEnabled. No other changes are permitted.

forcedinform

Cannot be changed.

description Can be extended or replaced via use of the action attribute. When changing the description, behavioral
backwards compatibility MUST be preserved.

syntax/hidden Cannot be changed.

syntax/list Can add or modify the list element in the following ways:

e Can convert a non-list string parameter to a list provided that an empty string was already a valid value
with the appropriate meaning.

e Can adjust limits on numbers of items, and on the list size, provided that the new rules do not permit any
values that were not valid for the previous version of the parameter.

syntax/int etc
syntax/dataType

Can make any change that follows the base type restriction rules of A.2.3.8, e.g. can add enumerations.

syntax/default

A default can be added if the parameter didn’t al

Most of the above requirements are non-normative, because it has to be possible to correct errors in a previous
version of a parameter. Processing tools SHOULD be able to detect and warn when a parameter is modified in a
way that contravenes the above rules.

February 2010

© The Broadband Forum. All rights reserved. 51 of 87

A.2.10.2

A.2.10.3

A.3

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Object Modifications
The following rules govern object modifications.

Table 20 — XML Object Modification

Name Description

access Can be “promoted” from readOnly to readWrite.
minEntries Cannot be changed.

maxEntries Cannot be changed.

entriesParameter Cannot be changed, unless was previously missing, in which case can be added.

enableParameter Cannot be changed, unless was previously missing, in which case can be added.

status Can be “promoted” to a “higher” value, wheated ¢t he
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be changed to
del et ed, but deleted can’'t be changed back to obs
obsoletion and deletion rules of section 2.4 MUST be obeyed.

description Can be extended or replaced via use of the action attribute. When changing the description, behavioral
backwards compatibility MUST be preserved.

uniqueKey Cannot be changed.

component Can reference (include) new components.

parameter Can add new parameters.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a previous
version of an object. Processing tools SHOULD be able to detect and warn when an object is modified in a way that
contravenes the above rules.

Profile Modifications
The following rules govern profile modifications. They apply to the profile element, and to its nested parameter and
object elements.

Table 21 — XML Profile Modification

Name Description

status Can be “promoted” to a “higher” value, where the
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be changed to
del eted, but deleted can’'t be changed back to ob
obsoletion and deletion rules of section 2.4 MUST be obeyed.

description Can be extended or replaced via use of the action attribute. When changing the description, behavioral
backwards compatibility MUST be preserved.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a profile.
Indeed, since profiles are immutable, the only valid reason for changing a profile is to correct errors. Processing
tools SHOULD be able to detect and warn when a profile is modified in a way that contravenes the above rules.

DM Schema

The DM Schema is specified below. The normative version can be found at http://www.broadband-
forum.org/cwmp/cwmp-datamodel-1-1.xsd. Please be aware that a new version of the DM Schema might be
published at any time, in which case the version in this document would become out of date. Any conflict MUST be
resolved in favor of the normative version on the web site.

February 2010 © The Broadband Forum. All rights reserved. 52 of 87

http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-1.xsd
http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-1.xsd

OCO~NOUITRWNEF

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<?xml version="1.0" encoding="UTF-8"?>
<!--
TR-069 Data Model Definition Schema (DM Schema) vl.2

Notice:

The Broadband Forum is a non-profit corporation organized to create
guidelines for broadband network system development and deployment. This
XML Schema has been approved by members of the Forum. This document is
not binding on the Broadband Forum, any of its members, or any developer
or service provider. This document is subject to change, but only with
approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a

copyright in this document, or any portion thereof, disclaims to the fullest

extent permitted by law any representation or warranty, express or implied,

including, but not limited to,

(a) any warranty of merchantability, fitness for a particular purpose,
non-infringement, or title;

(b) any warranty that the contents of the document are suitable for any
purpose, even if that purpose is known to the copyright holder;

(c) any warranty that the implementation of the contents of the documentation
will not infringe any third party patents, copyrights, trademarks or
other rights.

This publication may incorporate intellectual property. The Broadband Forum
encourages but does not require declaration of such intellectual property.
For a list of declarations made by Broadband Forum member companies,

please see http://www.broadband-forum.org.

Copyright The Broadband Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only. The text of this
notice must be included in all copies.

Summary:

TR-069 Data Model Definition Schema (DM Schema). DM Instances define TR-069
data models. Within the schema, elements are grouped by category (simple
types, complex types etc), and are in alphabetical order within each
category.

Version History:
November 2008: cwmp-datamodel-1-0.xsd, corresponds to TR-106 Amendment 2
September 2009: cwmp-datamodel-1-1.xsd, corresponds to TR-106 Amendment 3
- made import/@file a URI and optional (in line with
DT Schema)
- added RangeFacet step attribute
March 2010: cwmp-datamodel-1-2.xsd, corresponds to TR-106 Amendment 4
- added uniqueKey/@functional attribute
- supported #.A relative path syntax (parent)
-—>
<!DOCTYPE cwmp-datamodel [
<!ENTITY colon ":">
<!ENTITY hash "#">
<!ENTITY dot "\.">
<!ENTITY inst "(\{i\})
<!ENTITY name " ([\i-T[:]][\c [:\N.]1%)">
<!ENTITY Name "([\1 [—z:1][\e=[:\.]1*)">
<!ENTITY "(\d+
1>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="urn:broadband-forum-
org:cwmp:datamodel-1-2" targetNamespace="urn:broadband-forum-
org:cwmp:datamodel-1-2" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
<!-- Simple types -->
<xs:simpleType name="ActiveNotify">
<xs:annotation>
<xs:documentation>Parameter active notify support.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="normal"/>

February 2010 © The Broadband Forum. All rights reserved. 53 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:enumeration value="forceEnabled"/>
<xs:enumeration value="forceDefaultEnabled"/>
<xs:enumeration value="canDeny"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="AnyTypeName">
<xs:annotation>
<xs:documentation>Built-in or derived type name.</xs:documentation>
</xs:annotation>
<xs:union memberTypes="tns:BuiltinTypeName tns:DataTypeName"/>
</xs:simpleType>
<xs:simpleType name="BibrefId">
<xs:annotation>
<xs:documentation>Bibliographic reference ID; SHOULD uniquely identify this reference
across all instance documents.

For BBF DM Instances, the bibliographic reference ID rules specified in A.2.4 MUST be used. For
example, to reference TR-106 Issue 1 Amendment 2, the value of this
attribute would be TR-106a2.</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:token"/>
</xs:simpleType>
<xs:simpleType name="BuiltinTypeName">
<xs:annotation>
<xs:documentation>Built-in type name.

The type hierarchy is as for XML Schema, with "any" and "base64" mapping to the "anySimpleType"

and "base64Binary" XML Schema types respectively.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="any"/>
<xs:enumeration value="base64"/>
<xs:enumeration value="boolean"/>
<xs:enumeration value="dateTime"/>
<xs:enumeration value="hexBinary"/>
<xs:enumeration value="integer"/>
<xs:enumeration value="int"/>
<xs:enumeration value="long"/>
<xs:enumeration value="string"/>
<xs:enumeration value="unsignedInt"/>
<xs:enumeration value="unsignedLong"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ComponentName">
<xs:annotation>
<xs:documentation>Component name; the same as xs:NCName except that dots are not
permitted.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="&name;"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DataTypeName">
<xs:annotation>
<xs:documentation>Data type name; the same as xs:NCName except that cannot start with
lower-case letter (to avoid conflict with built-in data type names) and
dots are not permitted.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="&Name;"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DefaultType">
<xs:annotation>
<xs:documentation>Type of default.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="factory">
<xs:annotation>
<xs:documentation>Default from standard, e.g. RFC. Also applies on object
creation.</xs:documentation>
</xs:annotation>
</xs:enumeration>

February 2010 © The Broadband Forum. All rights reserved. 54 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

143 <xs:enumeration value="object">

144 <xs:annotation>

145 <xs:documentation>Default on object creation.</xs:documentation>

146 </xs:annotation>

147 </xs:enumeration>

148 </xs:restriction>

149 </xs:simpleType>

150 <xs:simpleType name="DescriptionAction">

151 <xs:annotation>

152 <xs:documentation>Description action.</xs:documentation>

153 </xs:annotation>

154 <xs:restriction base="xs:token">

155 <xs:enumeration value="create"/>

156 <xs:enumeration value="append"/>

157 <xs:enumeration value="replace"/>

158 </xs:restriction>

159 </xs:simpleType>

160 <xs:simpleType name="MaxEntries">

161 <xs:annotation>

162 <xs:documentation>Positive integer or "unbounded".</xs:documentation>

163 </xs:annotation>

164 <xs:union memberTypes="xs:positiveInteger">

165 <xs:simpleType>

166 <xs:restriction base="xs:token">

167 <xs:enumeration value="unbounded"/>

168 </xs:restriction>

169 </xs:simpleType>

170 </xs:union>

171 </xs:simpleType>

172 <xs:simpleType name="ModelName">

173 <xs:annotation>

174 <xs:documentation>Model name, including major and minor versions. The name part is the
175 same as xs:NCName except that dots are not permitted.</xs:documentation>
176 </xs:annotation>

177 <xs:restriction base="xs:token">

178 <xs:pattern value="&name; : # ˙ # " />

179 </xs:restriction>

180 </xs:simpleType>

181 <xs:simpleType name="ObjectName">

182 <xs:annotation>

183 <xs:documentation>Object name (maximum length 256). Each component is the same as
184 xs:NCName except that dots are not permitted. This name MUST in addition
185 follow the vendor-specific object name requirements of section

186 3.3.</xs:documentation>

187 </xs:annotation>

188 <xs:restriction base="xs:token">

189 <xs:maxLength value="256"/>

190 <xs:pattern value=" (&name; ˙ (&inst; ˙)?)+"/>

191 </xs:restriction>

192 </xs:simpleType>

193 <xs:simpleType name="ObjectReference">

194 <xs:annotation>

195 <xs:documentation>Object path that cannot contain "{i}" placeholders and that therefore
196 references a single object. The path MUST follow the requirements of
197 A.2.3.4 (its scope will typically be specified via an attribute of type
198 PathScope) .</xs:documentation>

199 </xs:annotation>

200 <xs:restriction base="xs:token">

201 <xs:pattern value="&hash;*˙? (&name; ˙)*"/>

202 </xs:restriction>

203 </xs:simpleType>

204 <xs:simpleType name="ObjectReferencePattern">

205 <xs:annotation>

206 <xs:documentation>Object path that can contain "{i}" placeholders and that can therefore
207 references multiple objects. The path MUST follow the requirements of
208 A.2.3.4 (its scope will typically be specified via an attribute of type
209 PathScope) .</xs:documentation>

210 </xs:annotation>

211 <xs:restriction base="xs:token">

212 <xs:pattern value="&hash;*˙? (&name; ˙ (&inst;˙)?)*"/>

213 </xs:restriction>

February 2010 © The Broadband Forum. All rights reserved. 55 of 87

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:simpleType>
<xs:simpleType name="ObjectReferencePatterns">
<xs:annotation>
<xs:documentation>List of object paths, each of which can contain "{i}"
placeholders.</xs:documentation>
</xs:annotation>
<xs:list itemType="tns:0bjectReferencePattern"/>
</xs:simpleType>
<xs:simpleType name="OpaqueID">
<xs:annotation>
<xs:documentation>Opaque ID.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ParameterName">
<xs:annotation>
<xs:documentation>Parameter name (maximum length 256); the same as xs:NCName except that
dots are not permitted. This name MUST in addition follow the vendor-
specific parameter name requirements of section 3.3.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="256"/>
<xs:pattern value="&name;"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ParameterReference">
<xs:annotation>
<xs:documentation>Parameter path that cannot contain "{i}" placeholders and that therefore
references a single parameter. The path MUST follow the requirements of
A.2.3.4 (its scope will typically be specified via an attribute of type
PathScope) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="&hash;*˙? (&name; ˙) *&name; " />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="PathScope">
<xs:annotation>
<xs:documentation>Object / parameter path name scope (A.2.3.4).</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="normal"/>
<xs:enumeration value="model"/>
<xs:enumeration value="object"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProfileName">
<xs:annotation>
<xs:documentation>Profile name, including version. The name part is the same as xs:NCName
except that dots are not permitted.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="&name; : #"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProfileNames">
<xs:annotation>
<xs:documentation>List of profile names.</xs:documentation>
</xs:annotation>
<xs:list itemType="tns:ProfileName"/>
</xs:simpleType>
<xs:simpleType name="ProfileObjectAccess">
<xs:annotation>
<xs:documentation>Object access (within profile).</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="notSpecified"/>
<xs:enumeration value="present"/>
<xs:enumeration value="create"/>

February 2010 © The Broadband Forum. All rights reserved. 56 of 87

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:enumeration value="delete"/>
<xs:enumeration value="createDelete"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ReadWriteAccess">
<xs:annotation>
<xs:documentation>Read-write access.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="readOnly"/>
<xs:enumeration value="readWrite"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ReferenceType">
<xs:annotation>
<xs:documentation>Reference type (A.2.3.6).</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="weak"/>
<xs:enumeration value="strong"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Status">
<xs:annotation>
<xs:documentation>Item status (applies to most types of item).</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="current"/>
<xs:enumeration value="deprecated"/>
<xs:enumeration value="obsoleted"/>
<xs:enumeration value="deleted"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="TargetType">
<xs:annotation>
<xs:documentation> (Reference) target type (used in path references) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="any"/>
<xs:enumeration value="parameter"/>
<xs:enumeration value="object"/>
<xs:enumeration value="single"/>
<xs:enumeration value="table"/>
<xs:enumeration value="row"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="UnitsString">
<xs:annotation>
<xs:documentation>Units string.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="32"/>
</xs:restriction>
</xs:simpleType>
<!-- Model groups -->
<xs:group name="AllBuiltinDataTypes">
<xs:annotation>
<xs:documentation>All built-in data types.</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:element name="baseb64">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>Length is that of the actual string, not the base64-encoded
string. See A.2.3.3.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>

February 2010 © The Broadband Forum. All rights reserved. 57 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

356 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
357 </xs:sequence>

358 <xs:anyAttribute namespace="##other"/>

359 </xs:complexType>

360 </xs:element>

361 <xs:element name="boolean">

362 <xs:complexType>

363 <xs:sequence>

364 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
365 </xs:sequence>

366 <xs:anyAttribute namespace="##other"/>

367 </xs:complexType>

368 </xs:element>

369 <xs:element name="dateTime">

370 <xs:complexType>

371 <xs:sequence>

372 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
373 </xs:sequence>

374 <xs:anyAttribute namespace="##other"/>

375 </xs:complexType>

376 </xs:element>

377 <xs:element name="hexBinary">

378 <xs:complexType>

379 <xs:sequence>

380 <xs:choice minOccurs="0" maxOccurs="unbounded">

381 <xs:element name="size" type="tns:SizeFacet">

382 <xs:annotation>

383 <xs:documentation>Length is that of the actual string, not the hexBinary-
384 encoded string. See A.2.3.3.</xs:documentation>

385 </xs:annotation>

386 </xs:element>

387 </xs:choice>

388 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
389 </xs:sequence>

390 <xs:anyAttribute namespace="##other"/>

391 </xs:complexType>

392 </xs:element>

393 <xs:element name="int">

394 <xs:complexType>

395 <xs:sequence>

396 <xs:choice minOccurs="0" maxOccurs="unbounded">

397 <xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
398 <xs:element name="range" type="tns:RangeFacet"/>

399 <xs:element name="units" type="tns:UnitsFacet"/>

400 </xs:choice>

401 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
402 </xs:sequence>

403 <xs:anyAttribute namespace="##other"/>

404 </xs:complexType>

405 </xs:element>

406 <xs:element name="long">

407 <xs:complexType>

408 <xs:sequence>

409 <xs:choice minOccurs="0" maxOccurs="unbounded">

410 <xs:element name="range" type="tns:RangeFacet"/>

411 <xs:element name="units" type="tns:UnitsFacet"/>

412 </xs:choice>

413 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
414 </xs:sequence>

415 <xs:anyAttribute namespace="##other"/>

416 </xs:complexType>

417 </xs:element>

418 <xs:element name="string">

419 <xs:complexType>

420 <xs:sequence>

421 <xs:choice minOccurs="0" maxOccurs="unbounded">

422 <xs:element name="size" type="tns:SizeFacet"/>

423 <xs:element name="pathRef" type="tns:PathRefFacet"/>

424 <xs:element name="enumeration" type="tns:EnumerationFacet"/>
425 <xs:element name="enumerationRef" type="tns:EnumerationRefFacet"/>
426 <xs:element name="pattern" type="tns:PatternFacet"/>

February 2010 © The Broadband Forum. All rights reserved. 58 of 87

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:unique name="stringEnumerationvalue">
<xs:selector xpath="enumeration"/>
<xs:field xpath="@value"/>
</xs:unique>
<xs:unique name="stringPatternvalue">
<xs:selector xpath="pattern"/>
<xs:field xpath="@value"/>
</xs:unique>
</xs:element>
<xs:element name="unsignedInt">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="unsignedLong">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:group>
<xs:group name="AllFacets">
<xs:annotation>
<xs:documentation>All facets.</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>Size facets, taken together, define the valid size ranges, e.g. (0:0)
and (6:6) mean that the size has to be 0 or 6.
The size facet MUST NOT be specified for non-string data types, i.e. data types that are not
derived from base64, hexBinary or string.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="instanceRef" type="tns:InstanceRefFacet">
<xs:annotation>
<xs:documentation>InstanceRef facets specify how a parameter can reference an object
instance (table row) via its instance number.
The instanceRef facet MUST NOT be specified for data types that are not derived from int or
unsignedInt.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="pathRef" type="tns:PathRefFacet">
<xs:annotation>
<xs:documentation>PathRef facets specify how a parameter can reference a parameter or
object via its path name.
The pathRef facet MUST NOT be specified for data types that are not derived from
string.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="range" type="tns:RangeFacet">

February 2010 © The Broadband Forum. All rights reserved. 59 of 87

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:annotation>
<xs:documentation>Range facets, taken together, define the valid value ranges, e.g. [-
1:-1] and [1:4094] mean that the value has to be -1 or 1:4094 (it cannot be
0).
The range facet MUST NOT be specified for non-numeric data types, i.e. data types that are not
derived from one of the integer types.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="enumeration" type="tns:EnumerationFacet">
<xs:annotation>
<xs:documentation>Enumeration facets, taken together, define the valid values, e.g. "a"
and "b" mean that the value has to be a or b.
The enumeration facet MUST NOT be specified for data types that are not derived from string.
Derived types MAY add additional enumeration values. See A.2.5.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="enumerationRef" type="tns:EnumerationRefFacet">
<xs:annotation>
<xs:documentation>EnumerationRef facets allow a parameter's valid values to be obtained
from another parameter.
The enumerationRef facet MUST NOT be specified for data types that are not derived from
string.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="pattern" type="tns:PatternFacet">
<xs:annotation>
<xs:documentation>Pattern attributes, taken together, define valid patterns, e.g. ""
and "[0-9A-Fa-f]{6}" means that the value has to be empty or a 6 digit hex

string.
The pattern facet MUST NOT be specified for data types that are not derived from string.
Pattern syntax is the same as for XML Schema regular expressions. See

http://www.w3.0rg/TR/xmlschema-2/#regexs.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="units" type="tns:UnitsFacet">
<xs:annotation>
<xs:documentation>Multiple units facets MUST NOT be specified.
The units facet MUST NOT be specified for data types that are not numeric, i.e. data types that
are not derived from one of the integer types.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
</xs:group>
<!-- Complex types -->
<xs:complexType name="BaseStatusFacet" abstract="true">
<xs:annotation>
<xs:documentation>Base facet (status attribute) .</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="BaseAccessFacet" abstract="true">
<xs:annotation>
<xs:documentation>Base facet (access, status and optional attributes).</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="access" type="tns:ReadWriteAccess" default="readWrite"/>
<xs:attribute name="optional" type="xs:boolean" default="false"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Bibliography">
<xs:annotation>
<xs:documentation>Bibliography definition.</xs:documentation>
</xs:annotation>
<xs:sequence>

February 2010 © The Broadband Forum. All rights reserved. 60 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

569 <xs:element name="description" type="tns:Description" minOccurs="0"/>
570 <xs:element name="reference" minOccurs="0" maxOccurs="unbounded">

571 <xs:complexType>

572 <xs:sequence>

573 <xs:element name="name" type="xs:token">

574 <xs:annotation>

575 <xs:documentation>Name by which the referenced document is usually known, e.g.
576 TR-069, RFC 2863.</xs:documentation>

577 </xs:annotation>

578 </xs:element>

579 <xs:element name="title" type="xs:token" minOccurs="0"/>

580 <xs:element name="organization" type="xs:token" minOccurs="0">
581 <xs:annotation>

582 <xs:documentation>Organization that published the referenced document, e.g. BBF,
583 IEEE, IETF.</xs:documentation>

584 </xs:annotation>

585 </xs:element>

586 <xs:element name="category" type="xs:token" minOccurs="0">

587 <xs:annotation>

588 <xs:documentation>Document category, e.g. TR (BBF), RFC

589 (IETF) .</xs:documentation>

590 </xs:annotation>

591 </xs:element>

592 <xs:element name="date" type="xs:token" minOccurs="0">

593 <xs:annotation>

594 <xs:documentation>Publication date.</xs:documentation>

595 </xs:annotation>

596 </xs:element>

597 <xs:choice minOccurs="0" maxOccurs="unbounded">

598 <xs:element name="hyperlink" type="xs:anyURI"/>

599 </xs:choice>

600 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
601 </xs:sequence>

602 <xs:attribute name="id" type="tns:BibrefId" use="required">

603 <xs:annotation>

604 <xs:documentation>Uniquely identifies the reference (this is checked by schema
605 validation). Can be referenced from descriptions by using the {{bibref}}
606 template. See A.2.2.4.</xs:documentation>

607 </xs:annotation>

608 </xs:attribute>

609 <xs:anyAttribute namespace="##other"/>

610 </xs:complexType>

611 </xs:element>

612 </xs:sequence>

613 </xs:complexType>

614 <xs:complexType name="ComponentDefinition">

615 <xs:annotation>

616 <xs:documentation>Component definition.</xs:documentation>

617 </xs:annotation>

618 <xs:sequence>

619 <xs:element name="description" type="tns:Description" minOccurs="0"/>
620 <xs:choice minOccurs="0" maxOccurs="unbounded">

621 <xs:element name="component" type="tns:ComponentReference"/>

622 <xs:element name="parameter" type="tns:ModelParameter"/>

623 <xs:element name="object" type="tns:ModelObject">

624 <xs:unique name="componentObjectParameterName">

625 <xs:selector xpath="parameter"/>

626 <xs:field xpath="@name"/>

627 </xs:unique>

628 <xs:keyref name="componentEnableParameterRef" refer="tns:componentObjectParameterName">
629 <xs:selector xpath="."/>

630 <xs:field xpath="@enableParameter"/>

631 </xs:keyref>

632 <xs:keyref name="componentUniqueKeyRef" refer="tns:componentObjectParameterName">
633 <xs:selector xpath="uniqueKey/parameter"/>

634 <xs:field xpath="@ref"/>

635 </xs:keyref>

636 </xs:element>

637 </xs:choice>

638 <xs:choice minOccurs="0" maxOccurs="unbounded">

639 <xs:element name="profile" type="tns:Profile"/>

February 2010 © The Broadband Forum. All rights reserved. 61 of 87

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:ComponentName" use="required">
<xs:annotation>
<xs:documentation>MUST be unique within the document, including imported components (this
is checked by schema validation) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ComponentReference">
<xs:annotation>
<xs:documentation>Component reference.</xs:documentation>
</xs:annotation>
<xs:attribute name="ref" type="tns:ComponentName" use="required">
<xs:annotation>
<xs:documentation>Name of component to be referenced (included).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="path" type="tns:0bjectName">
<xs:annotation>
<xs:documentation>If specified, is relative path between point of reference (inclusion)
and the component's items. If not specified, behavior is as if an empty
relative path was specified.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="DataTypeDefinition">
<xs:annotation>
<xs:documentation>Parameter data type definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:choice>
<xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Facets MUST NOT be specified if the base attribute is
omitted.</xs:documentation>
</xs:annotation>
</xs:group>
<xs:group ref="tns:AllBuiltinDataTypes" minOccurs="0">
<xs:annotation>
<xs:documentation>A built-in data type element MUST NOT be specified if the base
attribute is present.
See tns:AllFacets for notes and requirements on individual facets.</xs:documentation>
</xs:annotation>
</xs:group>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:DataTypeName" use="required">
<xs:annotation>
<xs:documentation>MUST be unique within the document, including imported data types (this
is checked by schema validation) .
Cannot begin with a lower-case letter, in order to avoid confusion with built-in data
types.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>MUST be present if and only if deriving from a non-built-in data type.
See A.2.3.1.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaqueID"/>
<xs:anyAttribute namespace="##other"/>

February 2010 © The Broadband Forum. All rights reserved. 62 of 87

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:complexType>
<xs:complexType name="DataTypeReference">
<xs:annotation>
<xs:documentation>Parameter data type reference or anonymous restriction /
extension.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded" />
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ref" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If specified, content MUST be empty.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If specified, content MUST NOT be empty.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="DefaultFacet">
<xs:annotation>
<xs:documentation>Default facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="type" type="tns:DefaultType" use="required"/>
<xs:attribute name="value" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Value MUST be valid for the data type.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Description">
<xs:annotation>
<xs:documentation>Description: free text which MAY contain a limited amount of mediawiki-
like markup as specified in A.2.2. For example, use "*" at the start of a
line to indicate a bulleted 1list.

To avoid confusion, the description SHOULD NOT contain tab characters.

For BBF standards, the character set MUST be restricted to printable characters in the Basic
Latin Unicode block, i.e. to characters whose decimal ASCII representations
are in the (inclusive) ranges 9-10 and 32-126.</xs:documentation>

</xs:annotation>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="action" type="tns:DescriptionAction" default="create">
<xs:annotation>
<xs:documentation>This MUST be specified when the description modifies that of a
previously defined item.

Specify "append" to append to the previous description, or "replace" to replace the previous

description.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="EnumerationFacet">
<xs:annotation>
<xs:documentation>Enumeration facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="value" type="xs:string" use="required"/>
<xs:attribute name="code" type="xs:integer"/>
</xs:extension>
</xs:complexContent>

February 2010 © The Broadband Forum. All rights reserved. 63 of 87

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:complexType>
<xs:complexType name="EnumerationRefFacet">
<xs:annotation>
<xs:documentation>Enumeration reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="targetParam" type="tns:ParameterReference" use="required">
<xs:annotation>
<xs:documentation>MUST reference a list-valued parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParamScope" type="tns:PathScope" default="normal">
<xs:annotation>
<xs:documentation>Specifies the point in the naming hierarchy relative to which
targetParam applies (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="nullValue" type="xs:token">
<xs:annotation>
<xs:documentation>Specifies the value that indicates that none of the values of the
referenced parameter currently apply.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Import">
<xs:annotation>
<xs:documentation>Import data types, components and models (Root and Service Objects) from
external documents. All such items MUST be imported (this is checked by
schema validation) .
The optional ref attribute MAY be used in order to avoid name conflicts between imported and
locally-defined items.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="dataType">
<xs:complexType>
<xs:attribute name="name" type="tns:DataTypeName" use="required"/>
<xs:attribute name="ref" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If omitted, data type is known by the same name in both this
and the referenced document.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="component">
<xs:complexType>
<xs:attribute name="name" type="tns:ComponentName" use="required"/>
<xs:attribute name="ref" type="tns:ComponentName">
<xs:annotation>
<xs:documentation>If omitted, component is known by the same name in both this
and the referenced document.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="model">
<xs:complexType>
<xs:attribute name="name" type="tns:ModelName" use="required"/>
<xs:attribute name="ref" type="tns:ModelName">
<xs:annotation>
<xs:documentation>If omitted, model is known by the same name in both this and
the referenced document.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:choice>

February 2010 © The Broadband Forum. All rights reserved. 64 of 87

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="file" type="xs:anyURI">
<xs:annotation>
<xs:documentation>If specified, MUST be used to locate the DM Instance
(A.2.1) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="spec" type="xs:anyURI">
<xs:annotation>
<xs:documentation>If file is specified, this MAY be specified, in which case processing
tools MUST regard a mismatch between this and the external document's spec
attribute as an error.
If file is not specified, this MUST be specified and be used to locate the DM Instance
(A.2.1) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="InstanceRefFacet">
<xs:annotation>
<xs:documentation>Instance number reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="refType" type="tns:ReferenceType" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of reference (A.2.3.6).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParent" type="tns:0ObjectReference" use="required">
<xs:annotation>
<xs:documentation>MUST reference a multi-instance object (table)
(A.2.3.4) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParentScope" type="tns:PathScope" default="normal">
<xs:annotation>
<xs:documentation>Specifies the point in the naming hierarchy relative to which
targetParent applies (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ListFacet">
<xs:annotation>
<xs:documentation>List facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>This specifies the size of the TR-069 list-valued parameter,
not of the individual list items.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
</xs:sequence>
<xs:attribute name="minItems" type="xs:nonNegativelInteger" default="0"/>
<xs:attribute name="maxItems" type="tns:MaxEntries" default="unbounded"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Model">
<xs:annotation>
<xs:documentation>Model (Root or Service Object) definition and
reference.</xs:documentation>
</xs:annotation>

February 2010 © The Broadband Forum. All rights reserved. 65 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

924 <xs:sequence>

925 <xs:element name="description" type="tns:Description" minOccurs="0"/>

926 <xs:choice minOccurs="0" maxOccurs="unbounded">

927 <xs:element name="component" type="tns:ComponentReference"/>

928 <xs:element name="parameter" type="tns:ModelParameter"/>

929 <xs:element name="object" type="tns:ModelObject">

930 <xs:unique name="objectParameterName">

931 <xs:selector xpath="parameter"/>

932 <xs:field xpath="@name"/>

933 </xs:unique>

934 <xs:keyref name="objectEnableParameterRef" refer="tns:objectParameterName">
935 <xs:selector xpath="."/>

936 <xs:field xpath="@enableParameter"/>

937 </xs:keyref>

938 <xs:keyref name="objectUniqueKeyRef" refer="tns:objectParameterName">

939 <xs:selector xpath="uniqueKey/parameter"/>

940 <xs:field xpath="@ref"/>

941 </xs:keyref>

942 </xs:element>

943 </xs:choice>

944 <xs:choice minOccurs="0" maxOccurs="unbounded">

945 <xs:element name="profile" type="tns:Profile"/>

946 </xs:choice>

947 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

948 </xs:sequence>

949 <xs:attribute name="name" type="tns:ModelName" use="required">

950 <xs:annotation>

951 <xs:documentation>MUST be unique within the document, including imported models (this is
952 checked by schema validation) .</xs:documentation>

953 </xs:annotation>

954 </xs:attribute>

955 <xs:attribute name="base" type="tns:ModelName">

956 <xs:annotation>

957 <xs:documentation>MUST be present if and only if extending an existing model. See
958 A.2.10.</xs:documentation>

959 </xs:annotation>

960 </xs:attribute>

961 <xs:attribute name="isService" type="xs:boolean" default="false"/>

962 <xs:attribute name="status" type="tns:Status" default="current"/>

963 <xs:attribute name="id" type="tns:OpaquelD"/>

964 <xs:anyAttribute namespace="##other"/>

965 </xs:complexType>

966 <xs:complexType name="ModelObject">

967 <xs:annotation>

968 <xs:documentation>Object definition and reference. See A.2.8.1 for details of how tables
969 are represented.</xs:documentation>

970 </xs:annotation>

971 <xs:sequence>

972 <xs:element name="description" type="tns:Description" minOccurs="0"/>

973 <xs:element name="uniqueKey" minOccurs="0" maxOccurs="unbounded">

974 <xs:annotation>

975 <xs:documentation>MUST NOT be present if the object is not a table (see maxEntries).
976 The parameters referenced by each unique key element MUST constitute a unique key.
977 For a non-functional key, or if the table has no enableParameter, the uniqueness requirement
978 always applies.

979 For a functional key, and if the table has an enableParameter, the uniqueness requirement applies
980 only to enabled table entries.</xs:documentation>

981 </xs:annotation>

982 <xs:complexType>

983 <xs:sequence>

984 <xs:element name="parameter" maxOccurs="unbounded">

985 <xs:complexType>

986 <xs:attribute name="ref" type="tns:ParameterName" use="required"/>
987 </xs:complexType>

988 </xs:element>

989 </xs:sequence>

990 <xs:attribute name="functional" type="xs:boolean" default="true">

991 <xs:annotation>

992 <xs:documentation>Indicates whether this is a functional (true) or non-functional
993 (false) key.</xs:documentation>

994 </xs:annotation>

February 2010 © The Broadband Forum. All rights reserved. 66 of 87

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:attribute>
</xs:complexType>
<xs:unique name="uniqueKeyParameterRef">
<xs:selector xpath="parameter"/>
<xs:field xpath="@ref"/>
</xs:unique>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="component" type="tns:ComponentReference"/>
<xs:element name="parameter" type="tns:ModelParameter"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="tns:0bjectName">
<xs:annotation>
<xs:documentation>MUST be unique within the component or model (this is checked by schema
validation) .
MUST be present if and only if defining a new object.
If the object is a table (see maxEntries), the final part of the name MUST be
"{i}.".</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:0bjectName">
<xs:annotation>
<xs:documentation>MUST be present if and only if modifying an existing
object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="access" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="minEntries" type="xs:nonNegativeInteger" use="required">
<xs:annotation>
<xs:documentation>minEntries MUST be less than or equal to maxEntries (all values are
regarded as being less than "unbounded") .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="maxEntries" type="tns:MaxEntries" use="required">
<xs:annotation>
<xs:documentation>minEntries and maxEntries indicate whether the object is a table:

* minEntries=0, maxEntries=1 : single-instance object which might not be allowed to exist, e.g.
because only one of it and another object can exist at the same time

* minEntries=1, maxEntries=1 : single-instance object that is always allowed to exist

* all other cases : object is a table</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="numEntriesParameter" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be specified for a table with a variable number of entries, i.e.
for which maxEntries is greater than minEntries ("unbounded" is regarded as
being greater than all values) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="enableParameter" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be specified for a table in which the ACS can create entries and
which has one or more uniqueKey elements that define functional
keys.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelParameter">
<xs:annotation>
<xs:documentation>Parameter definition and reference.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:element name="syntax" type="tns:Syntax" minOccurs="0"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

February 2010 © The Broadband Forum. All rights reserved. 67 of 87

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:attribute name="name" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be unique within the parent object (this is checked by schema
validation).
MUST be present if and only if defining a new parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be present if and only if modifying an existing
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="access" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="activeNotify" type="tns:ActiveNotify" default="normal"/>
<xs:attribute name="forcedInform" type="xs:boolean" default="false"/>
<xs:attribute name="id" type="tns:0OpaquelID"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="PathRefFacet">
<xs:annotation>
<xs:documentation>Path name reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="refType" type="tns:ReferenceType" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of reference (A.2.3.6).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParent" type="tns:ObjectReferencePatterns" default="">
<xs:annotation>
<xs:documentation>If the list is non-empty, this parameter MUST only reference
immediate children of matching objects (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParentScope" type="tns:PathScope" default="normal">
<xs:annotation>
<xs:documentation>Specifies the point in the naming hierarchy relative to which
targetParent applies (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetType" type="tns:TargetType" default="any">
<xs:annotation>
<xs:documentation>Specifies the type of item that can be
referenced.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetDataType" type="tns:AnyTypeName" default="any">
<xs:annotation>
<xs:documentation>Specifies the valid data types for a referenced
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="PatternFacet">
<xs:annotation>
<xs:documentation>Pattern facet (pattern syntax is as in XML Schema) .</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Profile">
<xs:annotation>
<xs:documentation>Profile definition and reference.</xs:documentation>

February 2010 © The Broadband Forum. All rights reserved. 68 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

1137 </xs:annotation>

1138 <xs:sequence>

1139 <xs:element name="description" type="tns:Description”" minOccurs="0">

1140 <xs:annotation>

1141 <xs:documentation>If the extends attribute is insufficient to express general profile
1142 requirements, any additional requirements MUST be specified
1143 here.</xs:documentation>

1144 </xs:annotation>

1145 </xs:element>

1146 <xs:choice minOccurs="0" maxOccurs="unbounded">

1147 <xs:element name="parameter" type="tns:ProfileParameter"/>

1148 <xs:element name="object" type="tns:ProfileObject"/>

1149 </xs:choice>

1150 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

1151 </xs:sequence>

1152 <xs:attribute name="name" type="tns:ProfileName">

1153 <xs:annotation>

1154 <xs:documentation>MUST be unique within the model (this is checked by schema validation) .
1155 MUST be present if and only if defining a new profile.</xs:documentation>

1156 </xs:annotation>

1157 </xs:attribute>

1158 <xs:attribute name="base" type="tns:ProfileName">

1159 <xs:annotation>

1160 <xs:documentation>MUST specify base if modifying an existing profile or if the profile
1161 version is greater than 1.</xs:documentation>

1162 </xs:annotation>

1163 </xs:attribute>

1164 <xs:attribute name="extends" type="tns:ProfileNames">

1165 <xs:annotation>

1166 <xs:documentation>MUST specify extends if the profile extends other

1167 profile(s) .</xs:documentation>

1168 </xs:annotation>

1169 </xs:attribute>

1170 <xs:attribute name="status" type="tns:Status" default="current"/>

1171 <xs:attribute name="id" type="tns:OpaquelD"/>

1172 <xs:anyAttribute namespace="##other"/>

1173 </xs:complexType>

1174 <xs:complexType name="ProfileObject">

1175 <xs:annotation>

1176 <xs:documentation>Profile object definition.</xs:documentation>

1177 </xs:annotation>

1178 <xs:sequence>

1179 <xs:element name="description" type="tns:Description" minOccurs="0">

1180 <xs:annotation>

1181 <xs:documentation>If the requirement attribute is insufficient to express the
1182 requirement, any additional requirements MUST be specified here and MAY
1183 override the attribute.</xs:documentation>

1184 </xs:annotation>

1185 </xs:element>

1186 <xs:element name="parameter" type="tns:ProfileParameter" minOccurs="0"

1187 maxOccurs="unbounded" />

1188 </xs:sequence>

1189 <xs:attribute name="ref" type="tns:0bjectName" use="required"/>

1190 <xs:attribute name="requirement" type="tns:ProfileObjectAccess" use="required"/>
1191 <xs:attribute name="status" type="tns:Status" default="current"/>

1192 <xs:anyAttribute namespace="##other"/>

1193 </xs:complexType>

1194 <xs:complexType name="ProfileParameter">

1195 <xs:annotation>

1196 <xs:documentation>Profile parameter definition.</xs:documentation>

1197 </xs:annotation>

1198 <xs:sequence>

1199 <xs:element name="description" type="tns:Description" minOccurs="0">

1200 <xs:annotation>

1201 <xs:documentation>If the requirement attribute is insufficient to express the
1202 requirement, any additional requirements MUST be specified here and MAY
1203 override the attribute.</xs:documentation>

1204 </xs:annotation>

1205 </xs:element>

1206 </xs:sequence>

1207 <xs:attribute name="ref" type="tns:ParameterName" use="required"/>

February 2010 © The Broadband Forum. All rights reserved. 69 of 87

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:attribute name="requirement" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="RangeFacet">
<xs:annotation>
<xs:documentation>Range facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="minInclusive" type="xs:integer"/>
<xs:attribute name="maxInclusive" type="xs:integer"/>
<xs:attribute name="step" type="xs:positivelnteger" default="1"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="SizeFacet">
<xs:annotation>
<xs:documentation>Size facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="minLength" type="xs:nonNegativeInteger" default="0"/>
<xs:attribute name="maxLength" type="xs:nonNegativeInteger" default="16"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="UnitsFacet">
<xs:annotation>
<xs:documentation>Units facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="value" type="tns:UnitsString" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Syntax'">
<xs:annotation>
<xs:documentation>Parameter syntax specification.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="1list" type="tns:ListFacet" minOccurs="0">
<xs:annotation>
<xs:documentation>For lists, the TR-069 parameter is always a string and the data type
specification applies to individual list items, not to the parameter value.
See section 3.2 for comma-separated list formatting rules.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice>
<xs:group ref="tns:AllBuiltinDataTypes">
<xs:annotation>
<xs:documentation>Direct use of built-in data type, possibly modified via use of
facets.</xs:documentation>
</xs:annotation>
</xs:group>
<xs:element name="dataType" type="tns:DataTypeReference">
<xs:annotation>
<xs:documentation>Use of named data type, possibly modified via use of
facets.</xs:documentation>
</xs:annotation>
<xs:unique name="dtRefEnumerationValue">
<xs:selector xpath="enumeration"/>
<xs:field xpath="@value"/>
</xs:unique>
<xs:unique name="dtRefPatternValue">
<xs:selector xpath="pattern"/>
<xs:field xpath="@value"/>
</xs:unique>
</xs:element>
</xs:choice>

February 2010 © The Broadband Forum. All rights reserved. 70 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

1279 <xs:element name="default" type="tns:DefaultFacet" minOccurs="0"/>
1280 </xs:sequence>

1281 <xs:attribute name="hidden" type="xs:boolean" default="false">

1282 <xs:annotation>

1283 <xs:documentation>If true, readback is always false, 0 or empty
1284 string.</xs:documentation>

1285 </xs:annotation>

1286 </xs:attribute>

1287 <xs:anyAttribute namespace="##other"/>

1288 </xs:complexType>

1289 <!-- Elements -->

1290 <xs:element name="document">

1291 <xs:annotation>

1292 <xs:documentation>CWMP Data Model Definition XML Schema (DM Schema) instance documents can
1293 contain any or all of the following:

1294 * Data type definitions

1295 * Root Object definitions (including profiles)

1296 * Service Object definitions (including profiles)

1297 * Component definitions

1298 * Vendor extension definitions</xs:documentation>

1299 </xs:annotation>

1300 <xs:complexType>

1301 <xs:sequence>

1302 <xs:element name="description" type="tns:Description”" minOccurs="0">
1303 <xs:annotation>

1304 <xs:documentation>Top-level description.</xs:documentation>
1305 </xs:annotation>

1306 </xs:element>

1307 <xs:element name="import" type="tns:Import" minOccurs="0" maxOccurs="unbounded">
1308 <xs:annotation>

1309 <xs:documentation>Imported data types, components and models (Root and Service
1310 Objects) .</xs:documentation>

1311 </xs:annotation>

1312 </xs:element>

1313 <xs:element name="dataType" type="tns:DataTypeDefinition" minOccurs="0"
1314 maxOccurs="unbounded">

1315 <xs:annotation>

1316 <xs:documentation>Top-level data type definitions.</xs:documentation>
1317 </xs:annotation>

1318 <xs:unique name="dtDefEnumerationValue">

1319 <xs:selector xpath="enumeration"/>

1320 <xs:field xpath="@value"/>

1321 </xs:unique>

1322 <xs:unique name="dtDefPatternValue">

1323 <xs:selector xpath="pattern"/>

1324 <xs:field xpath="@value"/>

1325 </xs:unique>

1326 </xs:element>

1327 <xs:element name="bibliography" type="tns:Bibliography" minOccurs="0">
1328 <xs:annotation>

1329 <xs:documentation>Bibliographic references.</xs:documentation>
1330 </xs:annotation>

1331 </xs:element>

1332 <xs:choice minOccurs="0" maxOccurs="unbounded">

1333 <xs:element name="component" type="tns:ComponentDefinition">
1334 <xs:annotation>

1335 <xs:documentation>Component definitions.</xs:documentation>
1336 </xs:annotation>

1337 <xs:unique name="componentParameterName">

1338 <xs:selector xpath="parameter"/>

1339 <xs:field xpath="@name"/>

1340 </xs:unique>

1341 <xs:unique name="componentObjectName">

1342 <xs:selector xpath="object"/>

1343 <xs:field xpath="@name"/>

1344 </xs:unique>

1345 <xs:unique name="componentProfileName">

1346 <xs:selector xpath="profile"/>

1347 <xs:field xpath="@name"/>

1348 </xs:unique>

1349 </xs:element>

February 2010 © The Broadband Forum. All rights reserved. 71 of 87

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:element name="model" type="tns:Model">
<xs:annotation>
<xs:documentation>Model (Root and Service Object) definitions.</xs:documentation>
</xs:annotation>
<xs:unique name="modelParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="modelObjectName">
<xs:selector xpath="object"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="modelProfileName">
<xs:selector xpath="profile"/>
<xs:field xpath="@name"/>
</xs:unique>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="spec" use="required">
<xs:annotation>
<xs:documentation>URI of the associated specification document, e.g. the BBF Technical
Report. This URI SHOULD uniquely identify the specification. More than
one DM Schema instance document MAY reference the same specification.
Where the specification is a BBF document, the URI naming rules specified in A.2.1.1 MUST be
used. For example, to reference TR-106 Issue 1 Amendment 2, the value of
this attribute would be urn:broadband-forum-org:tr-106-1-
2.</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:anyURI">
<xs:pattern value=".+"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:unique name="dataTypeName">
<xs:selector xpath="dataType|import/dataType"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="componentName">
<xs:selector xpath="component|import/component"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="modelName">
<xs:selector xpath="model|import/model"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="bibId">
<xs:selector xpath="bibliography/reference"/>
<xs:field xpath="@id"/>
</xs:unique>
<xs:keyref name="dataTypeBase" refer="tns:dataTypeName">
<xs:selector xpath="dataTypel|.//parameter/syntax/dataType"/>
<xs:field xpath="@base"/>
</xs:keyref>
<xs:keyref name="dataTypeRef" refer="tns:dataTypeName">
<xs:selector xpath=".//parameter/syntax/dataType"/>
<xs:field xpath="@ref"/>
</xs:keyref>
<xs:keyref name="componentRef" refer="tns:componentName">
<xs:selector xpath=".//component"/>
<xs:field xpath="@ref"/>
</xs:keyref>
<xs:keyref name="modelBase" refer="tns:modelName">
<xs:selector xpath="model"/>
<xs:field xpath="@base"/>
</xs:keyref>
</xs:element>

February 2010 © The Broadband Forum. All rights reserved. 72 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

1421 </xs:schema>

February 2010 © The Broadband Forum. All rights reserved. 73 of 87

B.1

B.2

B.2.1

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

Annex B. CWMP Device Type XML
Schema

Introduction

The CWMP Device Type XML Schema [11], or DT Schema, is used for describing a device’s supported data
model. It is specified in B.4.

DT Schema instance documents can contain the following:
e Imports (from DM Schema instance documents) of Root or Service Object definitions
e Declarations of which features of imported Root or Service Objects are supported

DT Schema instance documents cannot contain definitions of Root or Service Objects. All such definitions have to
reside in DM Schema instance documents.

Normative Information

It is possible to create instance documents that conform to the DT Schema but nevertheless are not valid device type
specifications. This is because it is not possible to specify all the normative device type specification requirements
using the XML Schema language. Therefore, the schema contains additional requirements written using the usual
normative language. Instance documents that conform to the DT Schema and meet these additional requirements
are referred to as DT Instances.

The question of the location of the definitive normative information therefore arises. The answer is as follows:
e All the normative information in the main part of the document remains normative.

e The DT Schema, and the additional requirements therein, are normative. Some of these additional requirements
are duplicated (for emphasis) in this Annex.

e The DT Schema references additional material in this Annex. Such material is normative.

e If the DT Schema conflicts with a normative requirement in the main part of the document, this is an error in the
DT Schema, and the requirement in the main part of the document takes precedence.

Importing DM Instances

DM Instances are imported using the top-level import element, which differs from the DM Schema import element
in that only data types and models can be imported (components cannot be imported because they are not used in
DT Instances).

Note i the rules for importing DM Instances into DT Instances are consistent with those given in A.2.1 for
importing DM Instances into other DM Instances. The only difference is an additional rule governing the
use, when available, of the DT Instance URL.

The DT Schema specifies that the DM Instance is located via the file attribute if it is present, and otherwise via the
spec attribute (although both attributes are optional, they cannot both be omitted).

When the file attribute is present, the rules governing its value and its use for locating the DM Instance are as
follows:

February 2010 © The Broadband Forum. All rights reserved. 74 of 87

B.2.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

e It MUST be a URL adhering to RFC 3986 [7].
e Ifthe URL includes a scheme, it MUST be http, https or ftp.
e Ifthe URL includes an authority, it MUST NOT include credentials.

e For standard BBF DM Instances, the rules that apply to the filename part (final path segment) of the A.2.1.1
BBFURL MUST be applied to the filename part of this URL. This means that the corrigendum number can be
omitted in order to refer to the latest corrigendum.

e Ifthe URL is a relative reference, processing tools MUST apply their own logic, e.g. apply a search path. Ifa
DT Instance URL is available, the relative reference MUST be interpreted relative to the DT Instance URL.

When the file attribute is absent, the rules governing the value and use of the spec attribute for locating the DM
Instance are as follows:

e If it begins with the string “urn:broadband-forum-org:”, it MUST be a BBFURI as defined in A.2.1.1, in which
case the DM Instance can be accessed at the BBFURL that is also defined in A.2.1.1.

e Otherwise, it can be used to locate the DM Instance only if processing tools understand the non-standard URI
format.

The above rules suggest the following recommendations:

e For accessing DM Instances that are BBF standards, the file attribute SHOULD NOT be specified, implying
that the spec attribute will be specified and will be used to locate the standard BBF DM Instance. For example:

<import spec="urn:broadband-forum-org:tr-157-1-0">
<model name="Device:1.3"/>
</import>

e Foraccessing DM Instances that are not BBF standards, the file attribute SHOULD be specified, implying that
it will be used to locate the non-standard DM Instance. For example:

<import file="http://example.com/device-1-0.xml">
<model name="X EXAMPLE Device:1.0"/>
</import>

Features

The feature element provides a simple way for a DT Instance to indicate whether a given feature is supported. The
current set of standard features is as follows:

Feature Description

DNSClient Device contains a DNS client.
DNSServer Device contains a DNS server.
Firewall Device contains a firewall.
IPv6 Device supports IPv6.

NAT Device supports NAT.
Router Device is a router.

Vendor-specific features MAY be supported, and if so the feature name MUST begin with X_<VENDOR>_, where
<VENDOR> MUST be as defined in section 3.3.

This example feature declaration illustrates the use of annotation:

<feature name="DNSServer">
<annotation>Supports a DNS Server and XYZ.</annotation>
</feature>

In order to make it easy to add new features, standard feature names are defined in a separate DT Features Schema
that is imported by the DT Schema. The DT Features Schema is unversioned, so the DT Schema need not be

February 2010 © The Broadband Forum. All rights reserved. 75 of 87

B.3

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

changed when new standard feature names are added. In order to preserve backwards compatibility, standard
feature names, once added, MUST NOT ever be deleted.

DT Features Schema

The DT Features Schema is specified below. The normative version can be found at http://www.broadband-
forum.org/cwmp/cwmp-devicetype-features.xsd. Please be aware that a new version of the DT Features Schema
might be published at any time, in which case the version in this document would become out of date. Any conflict
MUST be resolved in favor of the normative version on the web site.

February 2010 © The Broadband Forum. All rights reserved. 76 of 87

http://www.broadband-forum.org/cwmp/cwmp-devicetype-features.xsd
http://www.broadband-forum.org/cwmp/cwmp-devicetype-features.xsd

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<?xml version="1.0" encoding="UTF-8"?>
<!--

OCO~NOUITRWNEF

TR-069 DT (Device Type) Features Schema

Notice:

The Broadband Forum is a non-profit corporation organized to create
guidelines for broadband network system development and deployment. This
XML Schema has been approved by members of the Forum. This document is
not binding on the Broadband Forum, any of its members, or any developer
or service provider. This document is subject to change, but only with
approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a

copyright in this document, or any portion thereof, disclaims to the fullest

extent permitted by law any representation or warranty, express or implied,

including, but not limited to,

(a) any warranty of merchantability, fitness for a particular purpose,
non-infringement, or title;

(b) any warranty that the contents of the document are suitable for any
purpose, even if that purpose is known to the copyright holder;

(c) any warranty that the implementation of the contents of the documentation
will not infringe any third party patents, copyrights, trademarks or
other rights.

This publication may incorporate intellectual property. The Broadband Forum
encourages but does not require declaration of such intellectual property.
For a list of declarations made by Broadband Forum member companies,

please see http://www.broadband-forum.org.

Copyright The Broadband Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only. The text of this
notice must be included in all copies.

Summary:
TR-069 DT (Device Type) Features Schema. Defines device features that
can be described in DT Instances.

Version History:
September 2009: cwmp-devicetype-features.xsd, corresponds to TR-106
Amendment 3

-—>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="urn:broadband-forum-

org:cwmp:devicetype-features" targetNamespace="urn:broadband-forum-
org:cwmp:devicetype-features" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
<xs:simpleType name="FeatureName">
<xs:restriction base="xs:NCName">
<xs:pattern value="DNSClient"/>
<xs:pattern value="DNSServer"/>
<xs:pattern value="Firewall"/>
<xs:pattern value="IPv6"/>
<xs:pattern value="NAT"/>
<xs:pattern value="Router"/>
<xs:pattern value="X .+"/>
</xs:restriction>
</xs:simpleType>

</xs:schema>

February 2010 © The Broadband Forum. All rights reserved. 77 of 87

B.4

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

DT Schema

The DT Schema is specified below. The normative version can be found at http://www.broadband-
forum.org/cwmp/cwmp-devicetype-1-0.xsd. Please be aware that a new version of the DT Schema might be
published at any time, in which case the version in this document would become out of date. Any conflict MUST be
resolved in favor of the normative version on the web site.

February 2010 © The Broadband Forum. All rights reserved. 78 of 87

http://www.broadband-forum.org/cwmp/cwmp-devicetype-1-0.xsd
http://www.broadband-forum.org/cwmp/cwmp-devicetype-1-0.xsd

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<?xml version="1.0" encoding="UTF-8"?>
<!--

OCO~NOUITRWNEF

TR-069 Device Type Schema (DT Schema) v1.0

Notice:

The Broadband Forum is a non-profit corporation organized to create
guidelines for broadband network system development and deployment. This
XML Schema has been approved by members of the Forum. This document is
not binding on the Broadband Forum, any of its members, or any developer
or service provider. This document is subject to change, but only with
approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a

copyright in this document, or any portion thereof, disclaims to the fullest

extent permitted by law any representation or warranty, express or implied,

including, but not limited to,

(a) any warranty of merchantability, fitness for a particular purpose,
non-infringement, or title;

(b) any warranty that the contents of the document are suitable for any
purpose, even if that purpose is known to the copyright holder;

(c) any warranty that the implementation of the contents of the documentation
will not infringe any third party patents, copyrights, trademarks or
other rights.

This publication may incorporate intellectual property. The Broadband Forum
encourages but does not require declaration of such intellectual property.
For a list of declarations made by Broadband Forum member companies,

please see http://www.broadband-forum.org.

Copyright The Broadband Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only. The text of this
notice must be included in all copies.

Summary:
TR-069 Device Type Schema (DT Schema). DT Instances describe individual
devices' support for TR-069 data models.

Version History:
September 2009: cwmp-devicetype-1-0.xsd, corresponds to TR-106 Amendment 3

-—>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="urn:broadband-forum-

org:cwmp:devicetype-1-0" xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-
1-1" xmlns:dtf="urn:broadband-forum-org:cwmp:devicetype-features"
targetNamespace="urn:broadband-forum-org:cwmp:devicetype-1-0"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
<xs:import namespace="urn:broadband-forum-org:cwmp:datamodel-1-1" schemalocation="cwmp-
datamodel-1-1.xsd"/>
<xs:import namespace="urn:broadband-forum-org:cwmp:devicetype-features" schemalocation="cwmp-
devicetype-features.xsd"/>
<!-- Simple types -->
<xs:simpleType name="ActiveNotify">
<xs:annotation>
<xs:documentation>Parameter active notify support (based on
dm:activeNotify) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="normal"/>
<xs:enumeration value="willDeny"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ObjectAccess">
<xs:annotation>
<xs:documentation>Object access (based on dm:ProfileObjectAccess) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="readOnly"/>
<xs:enumeration value="create"/>
<xs:enumeration value="delete"/>
<xs:enumeration value="createDelete"/>

February 2010 © The Broadband Forum. All rights reserved. 79 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:restriction>
</xs:simpleType>
<!-- Model groups -->
<xs:group name="AllBuiltinDataTypes">
<xs:annotation>
<xs:documentation>All built-in data types.</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:element name="baset4">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="boolean">
<xs:complexType>
<xs:sequence>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="dateTime">
<xs:complexType>
<xs:sequence>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="hexBinary">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="int">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="long">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>

February 2010 © The Broadband Forum. All rights reserved. 80 of 87

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:element name="string">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet"/>
<xs:element name="pathRef" type="tns:PathRefFacet"/>
<xs:element name="enumeration" type="tns:EnumerationFacet"/>
<xs:element name="enumerationRef" type="tns:EnumerationRefFacet"/>
<xs:element name="pattern" type="tns:PatternFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:unique name="stringEnumerationValue">
<xs:selector xpath="enumeration"/>
<xs:field xpath="@value"/>
</xs:unique>
<xs:unique name="stringPatternvValue">
<xs:selector xpath="pattern"/>
<xs:field xpath="@value"/>
</xs:unique>
</xs:element>
<xs:element name="unsignedInt">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="unsignedLong">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:group>
<xs:group name="AllFacets">
<xs:annotation>
<xs:documentation>All facets.</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:element name="size" type="tns:SizeFacet"/>
<xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
<xs:element name="pathRef" type="tns:PathRefFacet"/>
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="enumeration" type="tns:EnumerationFacet"/>
<xs:element name="enumerationRef" type="tns:EnumerationRefFacet"/>
<xs:element name="pattern" type="tns:PatternFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
</xs:group>
<!-- Complex types -->
<xs:complexType name="Annotation">
<xs:annotation>
<xs:documentation>Annotation.</xs:documentation>
</xs:annotation>
<xs:simpleContent>

February 2010 © The Broadband Forum. All rights reserved. 81 of 87

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

<xs:extension base="xs:string">
<xs:anyAttribute namespace="##other"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="BaseAccessFacet" abstract="true">
<xs:annotation>
<xs:documentation>Base facet (access attribute) .</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="access" type="dm:ReadWriteAccess" default="readWrite"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="BaseStatusFacet" abstract="true">
<xs:annotation>
<xs:documentation>Base facet (no attributes) .</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="DefaultFacet">
<xs:annotation>
<xs:documentation>Default facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="type" type="dm:DefaultType" use="required"/>
<xs:attribute name="value" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Value MUST be valid for the data type.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="EnumerationFacet">
<xs:annotation>
<xs:documentation>Enumeration facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="value" type="xs:string" use="required"/>
<xs:attribute name="code" type="xs:integer"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="EnumerationRefFacet">
<xs:annotation>
<xs:documentation>Enumeration reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet"/>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Import">
<xs:annotation>
<xs:documentation>Import data types and models (Root and Service Objects) from DM
Instances. All such items MUST be imported (this is checked by schema
validation) .</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="dataType">
<xs:complexType>
<xs:attribute name="name" type="dm:DataTypeName" use="required"/>
</xs:complexType>

February 2010 © The Broadband Forum. All rights reserved. 82 of 87

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:element>
<xs:element name="model">
<xs:complexType>
<xs:attribute name="name" type="dm:ModelName" use="required"/>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="file" type="xs:anyURI">
<xs:annotation>
<xs:documentation>If specified, MUST be used to locate the DM Instance
(B.2.1) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="spec" type="xs:anyURI">
<xs:annotation>
<xs:documentation>If file is specified, this MAY be specified, in which case processing
tools MUST regard a mismatch between this and the external document's spec
attribute as an error.
If file is not specified, this MUST be specified and be used to locate the DM Instance
(B.2.1) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="InstanceRefFacet">
<xs:annotation>
<xs:documentation>Instance number reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="targetParent" type="dm:ObjectReference" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ListFacet">
<xs:annotation>
<xs:documentation>List facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>This specifies the size of the TR-069 list-valued parameter,
not of the individual list items.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
</xs:sequence>
<xs:attribute name="minItems" type="xs:nonNegativelInteger" default="0"/>
<xs:attribute name="maxItems" type="dm:MaxEntries" default="unbounded"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Model">
<xs:annotation>
<xs:documentation>Model (Root and Service Object) support details.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="parameter" type="tns:ModelParameter"/>
<xs:element name="object" type="tns:ModelObject">
<xs:unique name="objectParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@ref"/>
</xs:unique>
</xs:element>

February 2010 © The Broadband Forum. All rights reserved. 83 of 87

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ref" type="dm:ModelName" use="required"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelObject">
<xs:annotation>
<xs:documentation>Object support details</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="parameter" type="tns:ModelParameter"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="ref" type="dm:ObjectName" use="required"/>
<xs:attribute name="access" type="tns:0bjectAccess" use="required"/>
<xs:attribute name="minEntries" type="xs:nonNegativelnteger" use="required">
<xs:annotation>
<xs:documentation>minEntries MUST be greater than or equal to minEntries(DM), and less
than or equal to maxEntries (all values are regarded as being less than
"unbounded") .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="maxEntries" type="dm:MaxEntries" use="required">
<xs:annotation>
<xs:documentation>maxEntries MUST be less than or equal to maxEntries(DM) (all values are
regarded as being less than "unbounded") .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelParameter">
<xs:annotation>
<xs:documentation>Parameter support details.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
<xs:element name="syntax" type="tns:Syntax" minOccurs="0"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ref" type="dm:ParameterName" use="required"/>
<xs:attribute name="access" type="dm:ReadWriteAccess" use="required"/>
<xs:attribute name="activeNotify" type="tns:ActiveNotify" default="normal"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="PathRefFacet">
<xs:annotation>
<xs:documentation>Path name reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="targetParent" type="dm:ObjectReferencePatterns" default=""/>
<xs:attribute name="targetType" type="dm:TargetType" default="any"/>
<xs:attribute name="targetDataType" type="dm:AnyTypeName" default="any"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="PatternFacet">
<xs:annotation>
<xs:documentation>Pattern facet (pattern syntax is as in XML Schema) .</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="RangeFacet">

February 2010 © The Broadband Forum. All rights reserved. 84 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

427 <xs:annotation>

428 <xs:documentation>Range facet.</xs:documentation>

429 </xs:annotation>

430 <xs:complexContent>

431 <xs:extension base="tns:BaseAccessFacet">

432 <xs:attribute name="minInclusive" type="xs:integer"/>

433 <xs:attribute name="maxInclusive" type="xs:integer"/>

434 </xs:extension>

435 </xs:complexContent>

436 </xs:complexType>

437 <xs:complexType name="SizeFacet">

438 <xs:annotation>

439 <xs:documentation>Size facet.</xs:documentation>

440 </xs:annotation>

441 <xs:complexContent>

442 <xs:extension base="tns:BaseAccessFacet">

443 <xs:attribute name="minLength" type="xs:nonNegativelnteger" default="0"/>
444 <xs:attribute name="maxLength" type="xs:nonNegativelnteger" default="16"/>
445 </xs:extension>

446 </xs:complexContent>

447 </xs:complexType>

448 <xs:complexType name="DataTypeReference">

449 <xs:annotation>

450 <xs:documentation>Parameter data type anonymous restriction / extension.</xs:documentation>
451 </xs:annotation>

452 <xs:sequence>

453 <xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded"/>
454 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
455 </xs:sequence>

456 <xs:attribute name="base" type="dm:DataTypeName">

457 <xs:annotation>

458 <xs:documentation>If specified, content MUST NOT be empty.</xs:documentation>
459 </xs:annotation>

460 </xs:attribute>

461 <xs:anyAttribute namespace="##other"/>

462 </xs:complexType>

463 <xs:complexType name="Syntax">

464 <xs:annotation>

465 <xs:documentation>Parameter syntax support details.</xs:documentation>
466 </xs:annotation>

467 <xs:sequence>

468 <xs:element name="list" type="tns:ListFacet" minOccurs="0"/>

469 <xs:choice>

470 <xs:group ref="tns:AllBuiltinDataTypes">

471 <xs:annotation>

472 <xs:documentation>Direct use of built-in data type, possibly modified via use of
473 facets.</xs:documentation>

474 </xs:annotation>

475 </xs:group>

476 <xs:element name="dataType" type="tns:DataTypeReference">

477 <xs:annotation>

478 <xs:documentation>Use of named data type, possibly modified via use of
479 facets.</xs:documentation>

480 </xs:annotation>

481 <xs:unique name="dtRefEnumerationValue">

482 <xs:selector xpath="enumeration"/>

483 <xs:field xpath="@value"/>

484 </xs:unique>

485 <xs:unique name="dtRefPatternValue">

486 <xs:selector xpath="pattern"/>

487 <xs:field xpath="@value"/>

488 </xs:unique>

489 </xs:element>

490 </xs:choice>

491 <xs:element name="default" type="tns:DefaultFacet" minOccurs="0"/>
492 </xs:sequence>

493 <xs:anyAttribute namespace="##other"/>

494 </xs:complexType>

495 <xs:complexType name="ToplevelFeature">

496 <xs:annotation>

497 <xs:documentation>Top-level feature.</xs:documentation>

February 2010 © The Broadband Forum. All rights reserved. 85 of 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 4

498 </xs:annotation>

499 <xs:sequence>

500 <xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
501 </xs:sequence>

502 <xs:attribute name="name" type="dtf:FeatureName" use="required"/>

503 </xs:complexType>

504 <xs:complexType name="UnitsFacet">

505 <xs:annotation>

506 <xs:documentation>Units facet.</xs:documentation>

507 </xs:annotation>

508 <xs:complexContent>

509 <xs:extension base="tns:BaseStatusFacet">

510 <xs:attribute name="value" type="dm:UnitsString" use="required"/>
511 </xs:extension>

512 </xs:complexContent>

513 </xs:complexType>

514 <!-- Elements -->

515 <xs:element name="document">

516 <xs:annotation>

517 <xs:documentation>CWMP Device Type XML Schema (DT Schema) instance documents can contain
518 the following:

519 * Imports (from DM Schema instance documents) of Root or Service Object definitions
520 * Declarations of which features of imported Root or Service Objects are
521 supported</xs:documentation>

522 </xs:annotation>

523 <xs:complexType>

524 <xs:sequence>

525 <xs:element name="annotation" type="tns:Annotation" minOccurs="0">
526 <xs:annotation>

527 <xs:documentation>Top-level annotation.</xs:documentation>

528 </xs:annotation>

529 </xs:element>

530 <xs:element name="import" type="tns:Import" minOccurs="0" maxOccurs="unbounded">
531 <xs:annotation>

532 <xs:documentation>Imported models (Root and Service Objects) .</xs:documentation>
533 </xs:annotation>

534 </xs:element>

535 <xs:element name="bibliography" type="dm:Bibliography" minOccurs="0">
536 <xs:annotation>

537 <xs:documentation>Bibliographic references.</xs:documentation>
538 </xs:annotation>

539 </xs:element>

540 <xs:element name="feature" type="tns:ToplevelFeature" minOccurs="0"
541 maxOccurs="unbounded">

542 <xs:annotation>

543 <xs:documentation>Top-level features.</xs:documentation>

544 </xs:annotation>

545 </xs:element>

546 <xs:element name="model" type="tns:Model" minOccurs="0" maxOccurs="unbounded">
547 <xs:annotation>

548 <xs:documentation>Details of support for model (Root and Service
549 Object) .</xs:documentation>

550 </xs:annotation>

551 <xs:unique name="modelParameterName">

552 <xs:selector xpath="parameter"/>

553 <xs:field xpath="Q@ref"/>

554 </xs:unique>

555 <xs:unique name="modelObjectName">

556 <xs:selector xpath="object"/>

557 <xs:field xpath="Q@ref"/>

558 </xs:unique>

559 </xs:element>

560 </xs:sequence>

561 <xs:attribute name="deviceType" use="required">

562 <xs:annotation>

563 <xs:documentation>URI indicating the device type associated with this DT
564 Instance.</xs:documentation>

565 </xs:annotation>

566 <xs:simpleType>

567 <xs:restriction base="xs:anyURI">

568 <xs:pattern value=".+"/>

February 2010 © The Broadband Forum. All rights reserved. 86 of 87

569
570
571
572
573
574
575
576
S77
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

Data Model Template for TR-069-Enabled Devices

</xs:restriction>
</xs:simpleType>

</xs:attribute>

</xs:complexType>

<xs:unique name="dataTypeName">
<xs:selector xpath="import/dataType"/>
<xs:field xpath="@name"/>

</xs:unique>

<xs:keyref name="dataTypeBase" refer="tns:dataTypeName">
<xs:selector xpath=".//parameter/syntax/dataType"/>
<xs:field xpath="@base"/>

</xs:keyref>

<xs:unique name="modelName">
<xs:selector xpath="import/model"/>
<xs:field xpath="@name"/>

</xs:unique>

<xs:unique name="modelRef">
<xs:selector xpath="model"/>
<xs:field xpath="@ref"/>

</xs:unique>

<xs:keyref name="modelDef" refer="tns:modelName">
<xs:selector xpath="model"/>
<xs:field xpath="@ref"/>

</xs:keyref>

</xs:element>
</xs:schema>

February 2010 © The Broadband Forum. All rights reserved.

TR-106 Issue 1 Amendment 4

87 of 87

	Introduction
	Terminology
	Document Conventions

	Architecture
	Data Hierarchy
	Data Hierarchy Requirements
	Data Hierarchy Examples
	The Supported Data Model and the Instantiated Data Model

	Object Versioning
	Requirements for Compatible Versions
	Version Notation

	Profiles
	Scope of Profiles
	Multiple Profile Support
	Profile Versions
	Baseline Profiles
	Types of Requirements in a Profile

	DEPRECATED and OBSOLETED Items
	Requirements for DEPRECATED Items
	Requirements for OBSOLETED Items

	Object Definitions
	General Notation
	Data Types
	Vendor-Specific Parameters
	Common Object Definitions (Removed)
	Inform Requirements (Removed)
	Notification Requirements (Removed)
	DeviceSummary Definition
	DeviceSummary Examples

	Profile Definitions (Removed)
	Normative References
	CWMP Data Model Definition XML Schema
	Introduction
	Normative Information
	Importing DM Instances
	URI Conventions
	Descriptions
	Character Set
	Pre-processing
	Markup
	Templates
	HTML Example
	Data Types
	Named Data Types
	Anonymous Data Types
	Data Type Facets
	Reference Path Names
	Null References
	Reference Types
	Reference Facets
	Base Type Restriction
	Bibliography
	Components
	Root and Service Objects
	Parameters
	Parameter Syntax
	Objects
	Tables
	Profiles
	Modifications
	Parameter Modifications
	Object Modifications
	Profile Modifications

	DM Schema
	CWMP Device Type XML Schema
	Introduction
	Normative Information
	Importing DM Instances
	Features

	DT Features Schema
	DT Schema

